Remarks on multivariate Gaussian Gabor frames (Q382220)

From MaRDI portal





scientific article; zbMATH DE number 6228448
Language Label Description Also known as
English
Remarks on multivariate Gaussian Gabor frames
scientific article; zbMATH DE number 6228448

    Statements

    Remarks on multivariate Gaussian Gabor frames (English)
    0 references
    0 references
    0 references
    18 November 2013
    0 references
    Let \(g_d\) be the \(d\)-dimensional normalized Gaussian \(2^{\frac{d}{4}}e^{-\pi \|t\|^2}\), \(t\in\mathbb R^d\); \(\Lambda\subset \mathbb R^{2d}\) be a full rank lattice; \((g,\Lambda)\) be a Gabor system; \(D(\Lambda)\) be a density of \(\Lambda\). In the one-dimension case the Gabor system \((g_1,\Lambda)\) is a frame if and only if \(D(\Lambda)>1\). The authors prove that this does not extend to higher dimensions.
    0 references
    Gaussian window function
    0 references
    Gabor frames
    0 references
    sampling in Bargmann-Fock spaces
    0 references
    Beurling density
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references