Remarks on multivariate Gaussian Gabor frames (Q382220)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Remarks on multivariate Gaussian Gabor frames |
scientific article; zbMATH DE number 6228448
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Remarks on multivariate Gaussian Gabor frames |
scientific article; zbMATH DE number 6228448 |
Statements
Remarks on multivariate Gaussian Gabor frames (English)
0 references
18 November 2013
0 references
Let \(g_d\) be the \(d\)-dimensional normalized Gaussian \(2^{\frac{d}{4}}e^{-\pi \|t\|^2}\), \(t\in\mathbb R^d\); \(\Lambda\subset \mathbb R^{2d}\) be a full rank lattice; \((g,\Lambda)\) be a Gabor system; \(D(\Lambda)\) be a density of \(\Lambda\). In the one-dimension case the Gabor system \((g_1,\Lambda)\) is a frame if and only if \(D(\Lambda)>1\). The authors prove that this does not extend to higher dimensions.
0 references
Gaussian window function
0 references
Gabor frames
0 references
sampling in Bargmann-Fock spaces
0 references
Beurling density
0 references
0 references
0 references