Bounds for sectional genera of varieties invariant under Pfaff fields (Q384306)

From MaRDI portal





scientific article; zbMATH DE number 6233917
Language Label Description Also known as
English
Bounds for sectional genera of varieties invariant under Pfaff fields
scientific article; zbMATH DE number 6233917

    Statements

    Bounds for sectional genera of varieties invariant under Pfaff fields (English)
    0 references
    0 references
    0 references
    27 November 2013
    0 references
    Poincaré problem
    0 references
    sectional genus
    0 references
    Pfaff field
    0 references
    invariant varitey
    0 references
    0 references
    0 references
    0 references
    The abstract says: ``We establish an upper bound for the sectional genus of varieties which are invariant under Pfaff fields on projective spaces''. A more detailed summary should at least (assuming the reader is familiar with the nomenclature) include the statement of their results:NEWLINENEWLINE{Theorem.} Let \(X\) be a nonsingular projective variety of dimension \(m\) which is invariant under a Pfaff field \({\mathcal F}\) of rank \(k\) on \({\mathbb P}^n\); assume that \(m \geq k\). If the tangent bundle \(\Theta_{X}\) is stable, then NEWLINE\[NEWLINE \frac{2g(X, {\mathcal O}_X(1))-2}{\deg(X)} \leq \frac{\deg({\mathcal F})-k}{\binom{m-1}{k-1}}+m-1. NEWLINE\]NEWLINENEWLINENEWLINE{ Theorem.} Let \(X\subset {\mathbb P}^n\) be a Gorenstein projective variety nonsingular in codimension \(1\), which is invariant under a Pfaff field \({\mathcal F}\) on \({\mathbb P}^n\) whose rank is equal to the dimension of \(X\). Then NEWLINE\[NEWLINE \frac{2g(X, {\mathcal O}_X(1))-2}{\deg(X)} \leq \deg({\mathcal F}) - 1. NEWLINE\]NEWLINENEWLINENEWLINEThis result generalizes the bounds in [\textit{A. Campillo} et al., J. Lond. Math. Soc., II. Ser. 62, No. 1, 56--70 (2000; Zbl 1040.32027)].
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references