The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent (Q387440)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent |
scientific article; zbMATH DE number 6242013
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent |
scientific article; zbMATH DE number 6242013 |
Statements
The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent (English)
0 references
23 December 2013
0 references
indefinite semilinear elliptic systems
0 references
multiple positive solutions
0 references
critical Sobolev exponent
0 references
Nehari manifold
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
The authors study the combined effect of concave and convex nonlinearities on the number of solutions for an indefinite semilinear elliptic system of the type NEWLINE\[NEWLINE\begin{cases} -\Delta u=f_\lambda(x)|u|^{q-2}u+{\alpha\over{\alpha+\beta}}h(x)|u|^{\alpha-2}u|v|^\beta &\text{in}\;\Omega,\\ -\Delta v=g_\mu(x)|v|^{q-2}v+{\beta\over{\alpha+\beta}}h(x)|u|^{\alpha}|v|^{\beta-2}v &\text{in}\;\Omega,\\ u=v=0 &\text{on}\;\partial\Omega, \end{cases} NEWLINE\]NEWLINE involving critical exponents and sign-changing weight functions. In particular, \(\Omega\subset\mathbb R^N\) is a bounded domain, \(N\geq3\), \(0\in\Omega\), \(\alpha\), \(\beta>1\), \(\alpha+\beta=2^\ast ={{2N}\over{N-2}}\), \(q\in(1,2),\) \(\lambda\), \(\mu\geq 0\). NEWLINENEWLINENEWLINEUsing the Nehari manifold, the authors prove that the system have at least two nontrivial nonnegative solutions when the pair of the parameters \((\lambda,\mu)\) belongs to a certain subset of \(\mathbb R^2\).
0 references