Derivative formula and applications for degenerate diffusion semigroups (Q387984)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Derivative formula and applications for degenerate diffusion semigroups |
scientific article; zbMATH DE number 6239197
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Derivative formula and applications for degenerate diffusion semigroups |
scientific article; zbMATH DE number 6239197 |
Statements
Derivative formula and applications for degenerate diffusion semigroups (English)
0 references
18 December 2013
0 references
stochastic differential equation
0 references
Malliavin calculus
0 references
degenerate diffusion semigroup
0 references
Brownian motion
0 references
derivative formula
0 references
Markov semigroup
0 references
gradient estimate
0 references
Harnack inequality
0 references
0 references
0 references
0 references
0.9875108
0 references
0.9592427
0 references
0.9262219
0 references
0.91029024
0 references
0.90979445
0 references
0 references
0.90074164
0 references
The authors consider the SDE NEWLINE\[NEWLINE dX_t = Z(X_t) dt + (0,\sigma dB_t), \quad X_0=x\in \mathbb{R}^{m+d}, NEWLINE\]NEWLINE on \(\mathbb{R}^{m}\times\mathbb{R}^{d}\), where \(\sigma\) is an invertible \(d\times d\) matrix and \(B_t\) is a \(d\)-dimensional Brownian motion.NEWLINENEWLINE By using the Malliavin calculus and solving a control problem, the authors establish Bismut type derivative formulae for the associated Markov semigroup NEWLINE\[NEWLINE P_tf(x) = \mathbb{E}f(X_t(x)), \quad t>0,\; x\in \mathbb{R}^{m+d},\; f\in \mathcal{B}_b(\mathbb{R}^{m+d}), NEWLINE\]NEWLINE where \(\mathcal{B}_b(\mathbb{R}^{m+d})\) is the set of all bounded measurable functions on \(\mathbb{R}^{m+d}\).NEWLINENEWLINE As applications, they derive explicit gradient estimates and Harnack inequalities.
0 references