On the first integrals in the center problem (Q388129)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the first integrals in the center problem |
scientific article; zbMATH DE number 6239376
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the first integrals in the center problem |
scientific article; zbMATH DE number 6239376 |
Statements
On the first integrals in the center problem (English)
0 references
19 December 2013
0 references
analytic differential systems
0 references
center problem
0 references
first integral
0 references
0 references
0.9217352
0 references
0 references
0.89325285
0 references
0.88681924
0 references
0.87555754
0 references
0.87330794
0 references
The following theorem is the main result of the article.NEWLINENEWLINE Theorem. Let \(H(x,y;\varepsilon)\) be a first integral of the system NEWLINE\[NEWLINE\dot x= P(x,y;\varepsilon), \, \dot y= Q(x,y;\varepsilon).NEWLINE\]NEWLINE Assume that the first integral has a critical value for \(\varepsilon= \varepsilon_0\), namely \(H(x, y;\varepsilon_0)\) becomes a constant. Let \(k\) be the smallest integer number such that NEWLINE\[NEWLINE{\partial^k H(x,y; \varepsilon)\over \partial\varepsilon^k}\Biggl|_{\varepsilon= \varepsilon_0}\tag{1}NEWLINE\]NEWLINE is not constant. Then (1) is a first integral of the system NEWLINE\[NEWLINE\dot x= P(x,y; \varepsilon_0), \, \dot y= Q(x,y; \varepsilon_0).NEWLINE\]
0 references