Guiding functions for generalized periodic problems and applications (Q388573)

From MaRDI portal





scientific article; zbMATH DE number 6242363
Language Label Description Also known as
English
Guiding functions for generalized periodic problems and applications
scientific article; zbMATH DE number 6242363

    Statements

    Guiding functions for generalized periodic problems and applications (English)
    0 references
    0 references
    0 references
    2 January 2014
    0 references
    periodic solution
    0 references
    anti-periodic solution
    0 references
    guiding function
    0 references
    differential inclusion
    0 references
    differential game
    0 references
    By using the method of guiding functions, the authors obtain the existence of solutions for the class of differential inclusions in \(\mathbb R^n\) NEWLINE\[NEWLINE u'(t)\in F(t,u(t))\text{ for a.e. } t\in [0,T] NEWLINE\]NEWLINE with generalized periodic condition NEWLINE\[NEWLINE u(T)\in M(u(0)),NEWLINE\]NEWLINE where \(F\) is an upper Carathéodory type multimap with compact convex values and \(M\) is a multimap in \(\mathbb R^n\) which can be represented as the finite composition of upper semicontinuous multimaps with \(R_\delta\)-values. The classical periodic and anti-periodic problems are contained as particular cases. Further, examples from the theory of differential games are presented.
    0 references

    Identifiers