Generalized Hilbert operators on weighted Bergman spaces (Q390727)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Generalized Hilbert operators on weighted Bergman spaces |
scientific article; zbMATH DE number 6243603
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Generalized Hilbert operators on weighted Bergman spaces |
scientific article; zbMATH DE number 6243603 |
Statements
Generalized Hilbert operators on weighted Bergman spaces (English)
0 references
8 January 2014
0 references
generalized Hilbert operator
0 references
weighted Bergman space
0 references
Muckenhoupt weight
0 references
rapidly increasing weight
0 references
0 references
The authors study the boundedness and the compactness of the generalized Hilbert operator \( \displaystyle{\mathcal{H}_g(f)(z):=\int_0^1 f(t)g'(tz) dt} \) acting on weighted Bergman spaces \(A^p_\omega\) on the unit disk \(\mathbb{D}\), where \(\omega\) is a positive radial function satisfying the two following conditions:NEWLINENEWLINE\((R)\): \,\(\omega\) is a regular weight, that is, it is continuous on \([0,1)\) and NEWLINE\[NEWLINE\displaystyle{\widehat{\omega}(r):=\int_r^1\omega(t) dt\approx (1-r)\omega(r)}.NEWLINE\]NEWLINE \((M_p)\) (Muckenhoupt type condition): NEWLINE\[NEWLINE M_p(\omega):=\sup_{0\leq r<1}\left(\int_r^1\widehat{\omega}(t)^{-p'/p} dt\right)^{p/p'}\int_0^r(1-t)^{-p}\widehat{\omega}(t) dt<\infty. NEWLINE\]NEWLINE NEWLINENEWLINENEWLINENEWLINE The classical Hilbert operator \(\mathcal{H}\) corresponds to the choice \(g(z)=\log(1/(1-z))\).NEWLINENEWLINEThe conditions on the symbol \(g\) that characterize the boundedness or the compactness of the operator \(\mathcal{H}_g\) are given in terms of the following weighted Besov type spaces. NEWLINENEWLINENEWLINENEWLINE Let \(0<p\leq\infty\) and \(0<q<\infty\). For a positive function \(v\) on \([0,1)\), denote by \(H(p,q,v)\) the space of all holomorphic functions \(h\) on \(\mathbb{D}\) such that the mixed norm NEWLINE\[NEWLINE \|h\|_{H(p,q,v)}:=\left\|\,\|h(re^{i\theta})\|_{L^p(d\theta)}\right\|_{L^q(v(r)dr)} NEWLINE\]NEWLINE is finite. NEWLINENEWLINENEWLINENEWLINE If \(0<p\leq\infty\) and \(0<\alpha\leq 1\), let \(\Lambda(p,\alpha,v)\) be the space of all holomorphic functions \(h\) on \(\mathbb{D}\) such that NEWLINE\[NEWLINE \|h\|_{\Lambda(p,\alpha,v)}:=|h(0)|+\sup_{0\leq r<1} \frac{(1-r)^{1-\alpha}\|h'(re^{i\theta})\|_{L^p(d\theta)}}{v(r)}<\infty. NEWLINE\]NEWLINE Denote by \(\lambda(p,\alpha,v)\) the subspace of \(\Lambda(p,\alpha,v)\) consisting of those functions \(h\) satisfying NEWLINE\[NEWLINE \lim_{r\to 1^-} \frac{(1-r)^{1-\alpha}\|h'(re^{i\theta})\|_{L^p(d\theta)}}{v(r)}=0. NEWLINE\]NEWLINENEWLINENEWLINEThe main result of the paper states that if \(\omega\) satisfies conditions \((R)\) and \((M_p)\), then: NEWLINENEWLINENEWLINENEWLINE 1)\, If \(1<p\leq q<\infty\), \(\mathcal{H}_g\) is bounded (respectively, compact) from \(A^p_\omega\) to \(A^q_\omega\) if and only if \(g\,\in \Lambda\left(q,1/p,v\right)\) (respectively, \(g\,\in \lambda\left(q,1/p,v\right)\)) with \(v(r)=\widehat{\omega}(z)^{1/p-1/q}\). NEWLINENEWLINENEWLINENEWLINE 2)\, If \(1<q< p<\infty\), then \(\mathcal{H}_g\) is bounded from \(A^p_\omega\) to \(A^q_\omega\) if and only if it is compact if and \(g'\in H\left(q,s,v\right)\), where \(1/s=1/q-1/p\) and \(v(r)=(1-r)^{s(1-1/q)}\widehat{\omega}(r)\). NEWLINENEWLINENEWLINENEWLINE Observe that if \(p=q\), then the conditions on \(g\) depend only on \(p\). NEWLINENEWLINENEWLINENEWLINE The techniques used to prove the above results require the study of the properties of the above mentioned spaces, which is of interest by itself.NEWLINENEWLINEThe paper also contains an analysis on the Muckenhoupt condition. For instance, it is proved that if \(1<p<\infty\) and \(\omega\) is a regular weight such that \(\widehat{\omega}\in L^1(dr)\), then the Hilbert operator \(\mathcal{H}\) is bounded from \(L^p(\widehat{\omega}(r)dr)\) to \(A^p_\omega\) if and only if \(\omega\) satifies \((M_p)\).
0 references