Sharp decay estimates of \(L^q\)-norms for nonnegative Schrödinger heat semigroups (Q393060)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sharp decay estimates of \(L^q\)-norms for nonnegative Schrödinger heat semigroups |
scientific article; zbMATH DE number 6246007
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sharp decay estimates of \(L^q\)-norms for nonnegative Schrödinger heat semigroups |
scientific article; zbMATH DE number 6246007 |
Statements
Sharp decay estimates of \(L^q\)-norms for nonnegative Schrödinger heat semigroups (English)
0 references
16 January 2014
0 references
\(L^p-L^q\)-estimates
0 references
Schrödinger heat semigroups
0 references
quadratically decaying potential
0 references
radial potential
0 references
0 references
0 references
0 references
0 references
Let \(H=-\Delta+V\) be a nonnegative Schrödinger operator on \(L^2({\mathbb R}^N)\), where \(N\geq 3\) and \(V\) is a radially symmetric nonpositive function in \({\mathbb R}^N\) such that NEWLINE\[NEWLINEV=V(|x|)\in C^1([0,\infty)); NEWLINE\]NEWLINE NEWLINE\[NEWLINEV(|x|)=\omega |x|^{-2}+O(|x|^{-2-\theta}),\quad \theta>0,\quad \omega\in \left(-\frac{(N-2)^2}{2},0\right] \text{ as } |x|\to\infty; NEWLINE\]NEWLINE NEWLINE\[NEWLINE\sup\limits_{r>1}r^3|V'(r)|<\infty. NEWLINE\]NEWLINE It is known that there exists a radially symmetric, positive harmonic function \(U\) for the operator \(H\) satisfying NEWLINE\[NEWLINE\lim\limits_{|x|\to\infty} |x|^A U(|x|) = 1.NEWLINE\]NEWLINE The main result of the paper under review gives exact and optimal decay rates of \(\|e^{-tH}\|_{p,q}\) as \(t\to +\infty\) for all \(1\leq p\leq q\leq\infty\): NEWLINE\[NEWLINE \|e^{-tH}\|_{p,q}\asymp \phi_{N,A}(t).NEWLINE\]NEWLINE Under the assumption of the monotonicity of \(V\), the authors give a precise classification of the exact decay rates of \(\|e^{-tH}\|_{p,q}\).NEWLINENEWLINEThe proofs are based on the construction of supersolutions to the Cauchy problem.
0 references