Lipschitz type smoothness of the fractional integral on variable exponent spaces (Q394929)

From MaRDI portal





scientific article; zbMATH DE number 6250997
Language Label Description Also known as
English
Lipschitz type smoothness of the fractional integral on variable exponent spaces
scientific article; zbMATH DE number 6250997

    Statements

    Lipschitz type smoothness of the fractional integral on variable exponent spaces (English)
    0 references
    28 January 2014
    0 references
    0 references
    fractional integral
    0 references
    variable exponent
    0 references
    Lipschitz type smoothness
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    Given \(0<\alpha<n\) and an exponent function \(p(\cdot)\) with \(1\leq {p_{-}} \leq {p_{+}}<\infty\), where \(p_{-}:=\inf_{x\in{\mathbb{R}^n}}p(x)\) and \(p_{+}:=\sup_{x\in{\mathbb{R}^n}}p(x),\) the Lipschitz-type space \(\mathfrak{L}_{\alpha,p(\cdot)}\) is the class of all locally integrable functions \(f\) such that NEWLINE\[NEWLINE\frac{1}{|B|^{\frac{\alpha}{n}}\|\chi_B\|_{p'(\cdot)}} \int_B |f-m_Bf|dx\leq {C}, NEWLINE\]NEWLINE for every ball \(B\subset {\mathbb{R}}^n\), with \(m_B f=\frac{1}{|B|}\int_B f.\)NEWLINENEWLINEIn this paper, the authors study the boundedness of the fractional integral operator \(I_{\alpha}\) from strong and weak \(L^{p(\cdot)}\) spaces into the Lipschitz-type spaces \(\mathfrak{L}_{\alpha,p(\cdot)}\). The following are the main theorems in the paper.NEWLINENEWLINETheorem 1. Given \(0<\alpha<n\). Let \(p(\cdot)\) be an exponent function with \(1<{p_{-}} \leq {p_{+}}<\infty\). Then the following statements are equivalent.NEWLINENEWLINE(a) The operator \(I_{\alpha}\) can be extended to a linear bounded operator \(\widetilde{I}_{\alpha}\) from \(L^{p(\cdot)}\) into \(\mathfrak{L}_{\alpha,p(\cdot)}\) as follows, NEWLINE\[NEWLINE\widetilde{I}_{\alpha}f(x)=\int_{\mathbb{R}^n} \left(\frac{1}{|x-y|^{n-\alpha}} -\frac{1-\chi_{B(0,1)}(y)}{|y|^{n-\alpha}} \right)f(y)dy. NEWLINE\]NEWLINENEWLINENEWLINE(b) There exists a positive constant \(C\) such that NEWLINE\[NEWLINE\left\|\frac{\chi_{{\mathbb{R}}^n-B}}{|x_B-\cdot|^{n-\alpha+1}} \right\|_{p'(\cdot)}\leq {C}|B|^{\frac{\alpha}{n}-\frac{1}{n}-1}\|\chi_B\|_{p'(\cdot)}, NEWLINE\]NEWLINE holds for every ball \(B\), where \(x_B\) denotes its center.NEWLINENEWLINETheorem 2. Given \(0<\alpha<n\). Let \(p(\cdot)\) be an exponent function with \(1<{p_{-}} \leq {p_{+}}<\frac{n}{(\alpha-1)^{+}}\). Assume that \(p(\cdot) \in{LH_0\cap{LH_\infty}}\) and there exists a positive \(r_0\) such that \(p(x)\leq {p_{\infty}}\) for \(|x|>r_0\). Then \(\widetilde{I}_{\alpha}\) is bounded from \(L^{p(\cdot),\infty}\) into \(\mathfrak{L}_{\alpha,p(\cdot)}\).
    0 references

    Identifiers