On a system coupling two-crystallization Allen-Cahn equations and a singular Navier-Stokes system (Q396515)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a system coupling two-crystallization Allen-Cahn equations and a singular Navier-Stokes system |
scientific article; zbMATH DE number 6329773
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a system coupling two-crystallization Allen-Cahn equations and a singular Navier-Stokes system |
scientific article; zbMATH DE number 6329773 |
Statements
On a system coupling two-crystallization Allen-Cahn equations and a singular Navier-Stokes system (English)
0 references
13 August 2014
0 references
solidification
0 references
phase field
0 references
0.88709414
0 references
0.8842689
0 references
0.8798536
0 references
0.8798409
0 references
0.87725973
0 references
0.87430525
0 references
0.87203133
0 references
0.8688113
0 references
0.86707747
0 references
The authors consider the 2D nonstationary free boundary problem which models the solidifications and melting processes of certain metallic material. The material occupies a bounded domain \(\Omega\subset\mathbb{R}^2\) with smooth boundary, \(\Omega\) is divided into two parts \(\Omega_s\) and \(\Omega_m\), \(\Omega_s\) is the solid region and \(\Omega_m\) is the non-solid (molten) region. The unknown functions \(\alpha(x,t)\) and \(\beta(x,t)\) represent solid fractions of two different kinds of crystallization, the unknown function \(\gamma(x,t)\) represents the liquid fraction, and \(\alpha,\beta,\gamma\geq 0\) and \(\alpha+\beta+\gamma=1\). The temperature \(\tau(x,t)\), the velocity \(v(x,t)\) and phase functions \(\alpha,\beta,\gamma\) satisfy to the equations NEWLINE\[NEWLINE\begin{aligned} &\frac{\partial \tau}{\partial t}-b\Delta\tau+v\cdot\nabla\tau= l_1\frac{\partial \alpha}{\partial t}+l_2\frac{\partial \beta}{\partial t}+ l_3\frac{\partial \gamma}{\partial t}+f,\quad x\in\Omega, \\ &\frac{\partial \alpha}{\partial t}-k\Delta\alpha+v\cdot\nabla\alpha= g_1(\tau,\alpha,\beta,\gamma),\quad x\in\Omega, \\ &\frac{\partial \beta}{\partial t}-k\Delta\beta+v\cdot\nabla\beta= g_2(\tau,\alpha,\beta,\gamma),\quad x\in\Omega, \\ &\frac{\partial \gamma}{\partial t}-k\Delta\gamma+v\cdot\nabla\gamma= g_3(\tau,\alpha,\beta,\gamma),\quad x\in\Omega, \\ & \frac{\partial v}{\partial t}-\nu\Delta v+v\cdot\nabla v+h(\alpha+\beta)v= F(\tau,\alpha,\beta,\gamma),\quad x\in\Omega_m, \\ & \text{div}\,v=0,\quad x\in\Omega_m, \\ & v=0,\quad x\in\Omega_s, \\ &\frac{\partial \tau}{\partial n}=0,\;\frac{\partial \alpha}{\partial n}=0,\;\frac{\partial \beta}{\partial n}=0,\;\frac{\partial \gamma}{\partial n}=0, \quad x\in\partial\Omega, \\ & v=0,\quad x\in\partial\Omega_m, \\ &\tau=\tau_0,\;\alpha=\alpha_0,\;\beta=\beta_0,\;\gamma=\gamma_0,\;v=v_0,\;t=0. \end{aligned}NEWLINE\]NEWLINE Here \(b,k,\nu,l_1,l_2,l_3\) are given constants, \(f,g_1,g_2,g_3,F,\tau_0,\alpha_0,\beta_0,\gamma_0,v_0\) are given functions, \(h\) is a given non-negative function such that \(h(\alpha+\beta)=0\) if \(\alpha+\beta=0\), i.e. in the pure liquid region, and \(h(\alpha+\beta)=\infty\) if \(\alpha+\beta=1\), i.e. in the solid region.NEWLINENEWLINEIt is proved that the problem has a weak solution. It is necessary to remark that the Navier-Stokes equations have a strange form in the paper. There is no pressure term but there is the term \(\nabla v\).
0 references