Examples concerning Abel and Cesàro limits (Q401107)

From MaRDI portal





scientific article; zbMATH DE number 6334379
Language Label Description Also known as
English
Examples concerning Abel and Cesàro limits
scientific article; zbMATH DE number 6334379

    Statements

    Examples concerning Abel and Cesàro limits (English)
    0 references
    0 references
    0 references
    0 references
    26 August 2014
    0 references
    Tauberian theorem
    0 references
    Hardy-Littlewood theorem
    0 references
    Abel limit
    0 references
    Cesàro limit
    0 references
    The lower and upper Cesàro limits of a sequence \((u_n)_{n=1}^\infty\) are defined, respectively, by NEWLINE\[NEWLINE\underline{C}=\liminf_{n\to\infty}\frac{1}{n} \sum_{i=0}^{n-1}u_i,\quad\overline{C}=\limsup_{n \to \infty}\frac{1}{n} \sum_{i=0}^{n-1}u_i.NEWLINE\]NEWLINE The lower and upper Abel limits of a sequence \((u_n)_{n=1}^\infty\) are defined, respectively, by NEWLINE\[NEWLINE\underline{A}=\liminf_{x\to 1^-}(1-x) \sum_{n=0}^{\infty}u_n x^n,\quad\overline{A}=\limsup_{x \to 1^-}(1-x) \sum_{n=0}^{\infty}u_n x^n.NEWLINE\]NEWLINENEWLINENEWLINEFor a sequence bounded above or below, the following inequalities hold: NEWLINE\[NEWLINE\underline{C}\leq \underline{A}\leq\overline{A}\leq\overline{C}. \eqno{(*)}NEWLINE\]NEWLINENEWLINENEWLINEIf \(\underline{A}=\overline{A}\), then NEWLINE\[NEWLINE\underline{C}=\underline{A}=\overline{A}=\overline{C}. \tag{1}NEWLINE\]NEWLINENEWLINENEWLINEAccording to the authors, either the equalities (1) are satisfied or only the following relations are possible: NEWLINE\[NEWLINE\underline{C}<\underline{A}<\overline{A}<\overline{C},\tag{2}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\underline{C}=\underline{A}<\overline{A}=\overline{C},\tag{3}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\underline{C}<\underline{A}<\overline{A}=\overline{C},\tag{4}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\underline{C}=\underline{A}<\overline{A}<\overline{C}.\tag{5}NEWLINE\]NEWLINE For the inequalities (2), a number of authors provided some examples of bounded sequences. In this paper, the authors describe examples for which the inequalities (3), (4) and (5) hold for bounded sequences. They also discuss the application of Tauberian and Hardy-Littlewood theorems to Markov decision processes.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references