Examples concerning Abel and Cesàro limits (Q401107)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Examples concerning Abel and Cesàro limits |
scientific article; zbMATH DE number 6334379
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Examples concerning Abel and Cesàro limits |
scientific article; zbMATH DE number 6334379 |
Statements
Examples concerning Abel and Cesàro limits (English)
0 references
26 August 2014
0 references
Tauberian theorem
0 references
Hardy-Littlewood theorem
0 references
Abel limit
0 references
Cesàro limit
0 references
0 references
0 references
The lower and upper Cesàro limits of a sequence \((u_n)_{n=1}^\infty\) are defined, respectively, by NEWLINE\[NEWLINE\underline{C}=\liminf_{n\to\infty}\frac{1}{n} \sum_{i=0}^{n-1}u_i,\quad\overline{C}=\limsup_{n \to \infty}\frac{1}{n} \sum_{i=0}^{n-1}u_i.NEWLINE\]NEWLINE The lower and upper Abel limits of a sequence \((u_n)_{n=1}^\infty\) are defined, respectively, by NEWLINE\[NEWLINE\underline{A}=\liminf_{x\to 1^-}(1-x) \sum_{n=0}^{\infty}u_n x^n,\quad\overline{A}=\limsup_{x \to 1^-}(1-x) \sum_{n=0}^{\infty}u_n x^n.NEWLINE\]NEWLINENEWLINENEWLINEFor a sequence bounded above or below, the following inequalities hold: NEWLINE\[NEWLINE\underline{C}\leq \underline{A}\leq\overline{A}\leq\overline{C}. \eqno{(*)}NEWLINE\]NEWLINENEWLINENEWLINEIf \(\underline{A}=\overline{A}\), then NEWLINE\[NEWLINE\underline{C}=\underline{A}=\overline{A}=\overline{C}. \tag{1}NEWLINE\]NEWLINENEWLINENEWLINEAccording to the authors, either the equalities (1) are satisfied or only the following relations are possible: NEWLINE\[NEWLINE\underline{C}<\underline{A}<\overline{A}<\overline{C},\tag{2}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\underline{C}=\underline{A}<\overline{A}=\overline{C},\tag{3}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\underline{C}<\underline{A}<\overline{A}=\overline{C},\tag{4}NEWLINE\]NEWLINE NEWLINE\[NEWLINE\underline{C}=\underline{A}<\overline{A}<\overline{C}.\tag{5}NEWLINE\]NEWLINE For the inequalities (2), a number of authors provided some examples of bounded sequences. In this paper, the authors describe examples for which the inequalities (3), (4) and (5) hold for bounded sequences. They also discuss the application of Tauberian and Hardy-Littlewood theorems to Markov decision processes.
0 references