The polyharmonic Dirichlet problem and path counting (Q401291)

From MaRDI portal





scientific article; zbMATH DE number 6334495
Language Label Description Also known as
English
The polyharmonic Dirichlet problem and path counting
scientific article; zbMATH DE number 6334495

    Statements

    The polyharmonic Dirichlet problem and path counting (English)
    0 references
    0 references
    0 references
    26 August 2014
    0 references
    Dyck paths
    0 references
    surface splines
    0 references
    total positivity
    0 references
    boundary layer potentials
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    The paper deals with a class of polyharmonic Dirichlet problems in the half-space \(\mathbb R_+^d:=\mathbb R^{d-1}\times [0,\infty)\) of the form NEWLINE\[NEWLINE \Delta^m u(x) = 0 \,\,\,\text{ for }\,\,\, x\in\mathbb R_+^d, NEWLINE\]NEWLINE NEWLINE\[NEWLINE \lambda_k u=h_k \,\,\,\text{ for }\,\,\, k=0,\dots, m-1, NEWLINE\]NEWLINE where \(m> d/2\) and the \(m\) boundary conditions are NEWLINE\[NEWLINE \lambda_ku(x) := \Delta^{k/2} u(x_1,\dots,x_{d-1},0),\,\,\text{ for }\,\, k \,\,\text{ even } NEWLINE\]NEWLINE and NEWLINE\[NEWLINE \lambda_ku(x) := -\frac{\partial}{\partial x_d} \Delta^{(k-1)/2} u(x_1,\dots,x_{d-1},0),\,\,\text{ for }\,\, k \,\,\text{ odd}. NEWLINE\]NEWLINE The solution is presented as NEWLINE\[NEWLINE u(x)=\sum_{j=0}^{m-1}\int_{\partial\mathbb R_+^d} g_j(y)k_j(x,y) d\sigma (y), NEWLINE\]NEWLINE where the kernel \(k:\mathbb R^d \times \partial\mathbb R_+^d \to\mathbb R\) is defined as \(k_j(x,y):=\lambda _{j,y}\phi (x-y)\), \(\phi\) is a fundamental solution to \(\Delta^m\) in \(\mathbb R^d\) and \(g_j\) are auxiliary functions, defined on \(\mathbb R^{d-1}\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references