A fluid-structure model coupling the Navier-Stokes equations and the Lamé system (Q401297)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A fluid-structure model coupling the Navier-Stokes equations and the Lamé system |
scientific article; zbMATH DE number 6334498
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A fluid-structure model coupling the Navier-Stokes equations and the Lamé system |
scientific article; zbMATH DE number 6334498 |
Statements
A fluid-structure model coupling the Navier-Stokes equations and the Lamé system (English)
0 references
26 August 2014
0 references
Navier-Stokes equations
0 references
Lamé system
0 references
fluid-structure interaction
0 references
linear elastisity
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
The authors study the model of interaction between a fluid flow and an elastic solid. The solid parallelepiped \(\Omega_S\) floats into the parallelepiped \(\Omega\). The domain \(\Omega_F=\Omega\setminus\overline{\Omega_S}\) is occupied by the fluid. The domains \(\Omega_S\) and \(\Omega_F\) are time depended. The velocity of a fluid \(u(x,t)\) and the pressure \(p(x,t)\) satisfy to the Navier-Stokes equations NEWLINE\[NEWLINE \begin{cases} \frac{\partial u}{\partial t}-\text{div}\,\mathbb{T}(u,p) u+u\cdot\nabla u=0,\quad \text{div}\,u=0,\quad x\in\Omega_F(t),\;t>0, \\ u(x,0)=u_0(x),\quad x\in\Omega_F(0), \end{cases}NEWLINE\]NEWLINE where \(\mathbb{T}(u,p)\) is the stress tensor NEWLINE\[NEWLINE \mathbb{T}(u,p)=\nu(\nabla u+(\nabla u)^T)-p\mathbb{I}. NEWLINE\]NEWLINE The displacement \(w(x,t)\) of the elastic solid satisfies to the Lame system NEWLINE\[NEWLINE\begin{cases} \frac{\partial^2 w}{\partial t^2}-\text{div}\,\sigma(w) =0,\quad x\in\Omega_S(t),\;t>0, \\ w(x,0)=0,\quad \frac{\partial w}{\partial t}(x,0)=w_1,\quad x\in\Omega_S(0), \end{cases} NEWLINE\]NEWLINE where \(\sigma(w)\) is the elastic stress tensor NEWLINE\[NEWLINE \sigma(w)=\lambda\,\text{trace}\,\varepsilon(w)\mathbb{I}+ 2\mu\varepsilon(w),\quad \varepsilon(w)=\frac{1}{2}(\nabla w+(\nabla w)^T). NEWLINE\]NEWLINE On the fluid-solid interface the continuity of velocities and of the Cauchy stress forces are fulfilled. Function \(u\) satisfies to the Dirichlet boundary conditions on the exterior boundary, \(u\) and \(w\) satisfy to the periodic boundary conditions.NEWLINENEWLINEIt is proved that the problem admits a unique strong local in time solution. The result is obtained by successive approximation method.
0 references