Linear Mahler measures and double \(L\)-values of modular forms (Q403288)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Linear Mahler measures and double \(L\)-values of modular forms |
scientific article; zbMATH DE number 6335916
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Linear Mahler measures and double \(L\)-values of modular forms |
scientific article; zbMATH DE number 6335916 |
Statements
Linear Mahler measures and double \(L\)-values of modular forms (English)
0 references
29 August 2014
0 references
Mahler measure
0 references
special values of \(L\)-functions
0 references
modular forms
0 references
0 references
The equality NEWLINE\[NEWLINEm(P)={1\over2\pi i)^n}\int_{|z_1|=\cdots=|z_n|=1}{\log|P(x_1,\dots,x_n)|\over x_1\cdots x_n}dx_1\cdots x_nNEWLINE\]NEWLINE defines the logarithm of Mahler measure of a polynomial \(P(x_1,\dots,x_n)\). It has been shown by \textit{C. J. Smyth} [Bull. Aust. Math. Soc. 23, 49--63 (1981; Zbl 0442.10034)] that NEWLINE\[NEWLINEm(1+x_1+x_2)={3\sqrt3\over4\pi}L(\chi_{3},2),\tag{1}NEWLINE\]NEWLINE and in Appendix 1 of \textit{D. W. Boyd}'s paper [Can. Math. Bull. 24, 453--469 (1981; Zbl 0474.12005)]NEWLINE\[NEWLINEm(1+x_1+x_2+x_3) = {7\over2\pi^2}\zeta(3).\tag{2}NEWLINE\]NEWLINENEWLINENEWLINENEWLINEThe author obtains a rather complicated formula expressing \(m(1+x_1+x_2+x_3+x_4)\) by integrals of modular forms.
0 references