On a sumset problem for integers (Q405084)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a sumset problem for integers |
scientific article; zbMATH DE number 6340111
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a sumset problem for integers |
scientific article; zbMATH DE number 6340111 |
Statements
On a sumset problem for integers (English)
0 references
4 September 2014
0 references
Summary: Let \(A\) be a finite set of integers. We show that if \(k\) is a prime power or a product of two distinct primes then \[ |A+k\cdot A|\geq(k+1)|A|-\lceil k(k+2)/4\rceil \] provided \(|A|\geq (k-1)^{2}k!\), where \(A+k\cdot A=\{a+kb:\;a,b\in A\}\). We also establish the inequality \(|A+4\cdot A|\geq5|A|-6 \) for \(|A|\geq5\).
0 references
additive combinatorics
0 references
sumsets
0 references