The maximal length of a \(k\)-separator permutation (Q405306)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The maximal length of a \(k\)-separator permutation |
scientific article; zbMATH DE number 6340243
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The maximal length of a \(k\)-separator permutation |
scientific article; zbMATH DE number 6340243 |
Statements
The maximal length of a \(k\)-separator permutation (English)
0 references
4 September 2014
0 references
Summary: A permutation \(\sigma\in S_n\) is a \(k\)-separator if all of its patterns of length \(k\) are distinct. Let \(F(k)\) denote the maximal length of a \(k\)-separator. \textit{P. Hegarty} [``Permutations all of whose patterns of a given length are distinct'', J. Comb. Theory, Ser. A 120, No. 7, 1663--1671 (2013; \url{doi:10.1016/j.jcta.2013.06.006})] showed that \(k+\left\lfloor\sqrt{2k-1}\right\rfloor-1\leq F(k)\leq k+\left\lfloor\sqrt{2k-3}\right\rfloor\), and conjectured that \(F(k)=k+\left\lfloor\sqrt{2k-1}\right\rfloor-1\). This paper will strengthen the upper bound to prove the conjecture for all sufficiently large \(k\) (in particular, for all \(k\geq 320801\)).
0 references
permutations
0 references
pattern containment
0 references
0.87158763
0 references
0 references
0.8581867
0 references
0.8571578
0 references
0.85063183
0 references
0.8487536
0 references