An amalgam uniqueness result for recognising \(q^6:\mathrm{SU}_3(q)\), \(G_2(q)\), or \(3^{\cdot}M_{10}\) using biaffine polar spaces (Q405823)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An amalgam uniqueness result for recognising \(q^6:\mathrm{SU}_3(q)\), \(G_2(q)\), or \(3^{\cdot}M_{10}\) using biaffine polar spaces |
scientific article; zbMATH DE number 6340864
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An amalgam uniqueness result for recognising \(q^6:\mathrm{SU}_3(q)\), \(G_2(q)\), or \(3^{\cdot}M_{10}\) using biaffine polar spaces |
scientific article; zbMATH DE number 6340864 |
Statements
An amalgam uniqueness result for recognising \(q^6:\mathrm{SU}_3(q)\), \(G_2(q)\), or \(3^{\cdot}M_{10}\) using biaffine polar spaces (English)
0 references
8 September 2014
0 references
amalgam
0 references
recognition theorem
0 references
Mathieu group
0 references
\(G_2\)
0 references
hyperplane
0 references
diagram geometry
0 references
biaffine polar space
0 references