Positivity, decay, and extinction for a singular diffusion equation with gradient absorption (Q408147)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positivity, decay, and extinction for a singular diffusion equation with gradient absorption |
scientific article; zbMATH DE number 6019346
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positivity, decay, and extinction for a singular diffusion equation with gradient absorption |
scientific article; zbMATH DE number 6019346 |
Statements
Positivity, decay, and extinction for a singular diffusion equation with gradient absorption (English)
0 references
29 March 2012
0 references
singular diffusion
0 references
gradient absorption
0 references
gradient estimates
0 references
extinction
0 references
\(p\)-Laplacian
0 references
viscosity solutions
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.94871175
0 references
0.9383192
0 references
0.9261927
0 references
0.92161965
0 references
0.9120426
0 references
0.9114225
0 references
The Cauchy problem in \(\mathbb{R}^N\times (0,\infty)\) is studied for the equation NEWLINE\[NEWLINE{\partial u\over\partial t}- \text{div}(|\nabla_u|^{p-2}\nabla u)+ |\nabla u|^q= 0NEWLINE\]NEWLINE in the fast diffusion case \(1< p< 2\). Here \(q> 0\). Depending on the range of the parameters, one encounters extinction in finite time \((0< q<{p\over 2})\), preserved positivity and optimal decay estimates. One of the main tools are gradient estimates. A notion of viscosity solutions is used, although the equation is singular when \(\nabla u= 0\).
0 references