Higher Order Difference Schemes for the First and Third Boundary Value Problem to \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{1}{r}\;\frac{{\rm d}}{{{\rm d}r}}\left({r\frac{{{\rm d}u}}{{{\rm d}r}}} \right)\; + \;f\left( r\right) \; = \;0 $\end{document} (Q4085201)
From MaRDI portal
scientific article; zbMATH DE number 3504412
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Higher Order Difference Schemes for the First and Third Boundary Value Problem to \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{1}{r}\;\frac{{\rm d}}{{{\rm d}r}}\left({r\frac{{{\rm d}u}}{{{\rm d}r}}} \right)\; + \;f\left( r\right) \; = \;0 $\end{document} |
scientific article; zbMATH DE number 3504412 |
Statements
Higher Order Difference Schemes for the First and Third Boundary Value Problem to \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{1}{r}\;\frac{{\rm d}}{{{\rm d}r}}\left({r\frac{{{\rm d}u}}{{{\rm d}r}}} \right)\; + \;f\left( r\right) \; = \;0 $\end{document} (English)
0 references
1975
0 references