Super duality and homology of unitarizable modules of Lie algebras (Q409059)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Super duality and homology of unitarizable modules of Lie algebras |
scientific article; zbMATH DE number 6023345
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Super duality and homology of unitarizable modules of Lie algebras |
scientific article; zbMATH DE number 6023345 |
Statements
Super duality and homology of unitarizable modules of Lie algebras (English)
0 references
12 April 2012
0 references
Summary: The \(\mathfrak u\)-homology formulas for unitarizable modules at negative levels over classical Lie algebras of infinite rank of types \(\mathfrak{gl}(n)\), \(\mathfrak{sp}(2n)\) and \(\mathfrak{so}(2n)\) are obtained. As a consequence, we recover Enright's formulas for three Hermitian symmetric pairs of classical types \((\mathrm{SU}(p,q), \mathrm{SU}(p)\times \mathrm{SU}(q))\), \((\mathrm{Sp}(2n),\mathrm{U}(n))\) and \((\mathrm{SO}^\ast(2n),\mathrm{U}(n))\).
0 references
super duality
0 references
homology
0 references
unitarizable module
0 references
0 references
0 references