Convex image segmentation model based on local and global intensity fitting energy and split Bregman method (Q411073)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Convex image segmentation model based on local and global intensity fitting energy and split Bregman method |
scientific article; zbMATH DE number 6021742
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Convex image segmentation model based on local and global intensity fitting energy and split Bregman method |
scientific article; zbMATH DE number 6021742 |
Statements
Convex image segmentation model based on local and global intensity fitting energy and split Bregman method (English)
0 references
4 April 2012
0 references
Summary: We propose a convex image segmentation model in a variational level set formulation. Both the local information and the global information are taken into consideration to get better segmentation results. We first propose a globally convex energy functional to combine the local and global intensity fitting terms. The proposed energy functional is then modified by adding an edge detector to force the active contour to the boundary more easily. We then apply the split Bregman method to minimize the proposed energy functional efficiently. By using a weight function that varies with location of the image, the proposed model can balance the weights between the local and global fitting terms dynamically. We have applied the proposed model to synthetic and real images with desirable results. Comparison with other models also demonstrates the accuracy and superiority of the proposed model.
0 references
0 references
0 references