Vertex algebras associated to modified regular representations of the Virasoro algebra (Q411647)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Vertex algebras associated to modified regular representations of the Virasoro algebra |
scientific article; zbMATH DE number 6028995
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Vertex algebras associated to modified regular representations of the Virasoro algebra |
scientific article; zbMATH DE number 6028995 |
Statements
Vertex algebras associated to modified regular representations of the Virasoro algebra (English)
0 references
30 April 2012
0 references
vertex algebras
0 references
Virasoro algebra
0 references
BPZ-equations
0 references
hypergeometric series
0 references
0 references
0.95311546
0 references
0.93957466
0 references
0.93872166
0 references
0.93504393
0 references
0.92806154
0 references
0.91845727
0 references
In the paper under review, the authors construct a family of vertex operator algebras with central charge \(26\). They start with two copies of the Virasoro vertex operator algebras \(L(c,0)\) and \(L(\bar{c},0)\) such that NEWLINE\[NEWLINE c = 13 - 6 \varkappa - 6 \varkappa^{-1}, \;\bar c = 13 + 6 \varkappa + 6 \varkappa^{-1} \qquad (\varkappa \in \mathbb C \setminus \mathbb Q).NEWLINE\]NEWLINE Then they consider \(L(c,0) \otimes L(\bar{c},0)\)-module NEWLINE\[NEWLINE W= \bigoplus_{\lambda \in {\mathbb N} } L(c, \Delta(\lambda) ) \otimes L(\bar{c}, \bar{\Delta}(\lambda)) NEWLINE\]NEWLINE where highest weights are NEWLINE\[NEWLINE \Delta (\lambda) = \frac{\lambda (\lambda +2) }{ 4\varkappa } - \frac{\lambda}{2}, \quad \bar{\Delta} (\lambda) = -\frac{\lambda (\lambda +2) }{ 4\varkappa } - \frac{\lambda}{2}.NEWLINE\]NEWLINE The authors show that \(W\) carries the structure of a vertex operator algebra. The vertex operators are constructed from intertwining operators for Virasoro vertex operator algebras. The authors also obtain certain results on fusion rules for Virasoro vertex operator algebras and new hypergeometric identities.
0 references