Vertex algebras associated to modified regular representations of the Virasoro algebra (Q411647)

From MaRDI portal





scientific article; zbMATH DE number 6028995
Language Label Description Also known as
English
Vertex algebras associated to modified regular representations of the Virasoro algebra
scientific article; zbMATH DE number 6028995

    Statements

    Vertex algebras associated to modified regular representations of the Virasoro algebra (English)
    0 references
    0 references
    0 references
    30 April 2012
    0 references
    vertex algebras
    0 references
    Virasoro algebra
    0 references
    BPZ-equations
    0 references
    hypergeometric series
    0 references
    In the paper under review, the authors construct a family of vertex operator algebras with central charge \(26\). They start with two copies of the Virasoro vertex operator algebras \(L(c,0)\) and \(L(\bar{c},0)\) such that NEWLINE\[NEWLINE c = 13 - 6 \varkappa - 6 \varkappa^{-1}, \;\bar c = 13 + 6 \varkappa + 6 \varkappa^{-1} \qquad (\varkappa \in \mathbb C \setminus \mathbb Q).NEWLINE\]NEWLINE Then they consider \(L(c,0) \otimes L(\bar{c},0)\)-module NEWLINE\[NEWLINE W= \bigoplus_{\lambda \in {\mathbb N} } L(c, \Delta(\lambda) ) \otimes L(\bar{c}, \bar{\Delta}(\lambda)) NEWLINE\]NEWLINE where highest weights are NEWLINE\[NEWLINE \Delta (\lambda) = \frac{\lambda (\lambda +2) }{ 4\varkappa } - \frac{\lambda}{2}, \quad \bar{\Delta} (\lambda) = -\frac{\lambda (\lambda +2) }{ 4\varkappa } - \frac{\lambda}{2}.NEWLINE\]NEWLINE The authors show that \(W\) carries the structure of a vertex operator algebra. The vertex operators are constructed from intertwining operators for Virasoro vertex operator algebras. The authors also obtain certain results on fusion rules for Virasoro vertex operator algebras and new hypergeometric identities.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references