Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces (Q413198)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces |
scientific article; zbMATH DE number 6030908
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces |
scientific article; zbMATH DE number 6030908 |
Statements
Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces (English)
0 references
4 May 2012
0 references
small BMO coefficients
0 references
global regularity
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9266316
0 references
0.9207539
0 references
0.9190806
0 references
0.9184997
0 references
0.9163388
0 references
0.91453767
0 references
0.9138683
0 references
In the very interesting paper under review, the authors obtain global regularity estimates in Sobolev and Orlicz spaces for the strong solutions to the Cauchy problem for higher-order parabolic equations of nondivergence form NEWLINE\[NEWLINE u_t-\sum_{|\nu|=0}^{2m} a_\nu(x,t)D^\nu u =f(x,t)\quad \text{in}\;{\mathbb R}^n\times(0,T), NEWLINE\]NEWLINE where the coefficients have small BMO seminorms and satisfy NEWLINE\[NEWLINE (-1)^{m-1} \sum_{|\nu|=2m} a_\nu(x,t)\xi^\nu\geq\Lambda_1|\xi|^{2m},\quad \sum_{|\nu|=0}^{2m} |a_\nu(x,t)|\leq \Lambda_2.NEWLINE\]NEWLINE The corresponding elliptic result is derived as particular case of time-independent data.
0 references