Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces (Q413198)

From MaRDI portal





scientific article; zbMATH DE number 6030908
Language Label Description Also known as
English
Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces
scientific article; zbMATH DE number 6030908

    Statements

    Higher-order nondivergence elliptic and parabolic equations in Sobolev spaces and Orlicz spaces (English)
    0 references
    0 references
    0 references
    4 May 2012
    0 references
    small BMO coefficients
    0 references
    global regularity
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    In the very interesting paper under review, the authors obtain global regularity estimates in Sobolev and Orlicz spaces for the strong solutions to the Cauchy problem for higher-order parabolic equations of nondivergence form NEWLINE\[NEWLINE u_t-\sum_{|\nu|=0}^{2m} a_\nu(x,t)D^\nu u =f(x,t)\quad \text{in}\;{\mathbb R}^n\times(0,T), NEWLINE\]NEWLINE where the coefficients have small BMO seminorms and satisfy NEWLINE\[NEWLINE (-1)^{m-1} \sum_{|\nu|=2m} a_\nu(x,t)\xi^\nu\geq\Lambda_1|\xi|^{2m},\quad \sum_{|\nu|=0}^{2m} |a_\nu(x,t)|\leq \Lambda_2.NEWLINE\]NEWLINE The corresponding elliptic result is derived as particular case of time-independent data.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references