Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds (Q413399)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds |
scientific article; zbMATH DE number 6031039
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds |
scientific article; zbMATH DE number 6031039 |
Statements
Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds (English)
0 references
7 May 2012
0 references
complex Monge-Ampère equation
0 references
Calabi conjecture
0 references
Hermitian manifold
0 references
0.87013245
0 references
0.8516277
0 references
0.8451478
0 references
0.8447908
0 references
0 references
0.81631905
0 references
0.81597245
0 references
0.8148632
0 references
0.81231856
0 references
Let \((M,g)\) be a compact Hermitian manifold of complex dimension \(n\) with \(\text{Vol}(M) = 1\), and \(F\) a smooth function on \(M\). The main result of this article shows that there is a smooth solution \(\varphi\) to the parabolic complex Monge-Ampère equation NEWLINENEWLINENEWLINE\[NEWLINE\frac{\partial \varphi}{\partial t} = \log\frac{\det(g^{}_{i\bar j} + \partial^{}_i \partial^{}_{\bar j} \varphi)}{\det g^{}_{i\bar j}} - F, \quad g^{}_{i\bar j} + \partial^{}_i \partial^{}_{\bar j} \varphi>0,NEWLINE\]NEWLINE NEWLINENEWLINEfor all time. Furthermore, \(\widetilde{\varphi}\) converges in \(C^\infty\) to a smooth function \(\widetilde{\varphi}_\infty\), where NEWLINE\[NEWLINE\widetilde{\varphi} = \varphi - \int_M \varphi \omega^n.NEWLINE\]NEWLINE The author develops an argument showing that there is a unique real number \(b\) such that the pair \((b, \widetilde{\varphi}_\infty)\) is the unique solution to the Monge-Ampère equation NEWLINENEWLINENEWLINE\[NEWLINE \log\frac{\det(g^{}_{i\bar j} + \partial^{}_i \partial^{}_{\bar j} \varphi)}{\det g^{}_{i\bar j}} = F + b, \quad g^{}_{i\bar j} + \partial^{}_i \partial^{}_{\bar j} \varphi>0,NEWLINE\]NEWLINE NEWLINENEWLINENEWLINEwith \(\int_M \varphi \omega^n = 0\). This is an extension to a result by \textit{P. Cherrier} [Bull. Sci. Math., II. Sér. 111, 343--385 (1987; Zbl 0629.58028)].
0 references