Hardy spaces associated to Schrödinger operators on product spaces (Q416305)

From MaRDI portal





scientific article; zbMATH DE number 6032350
Language Label Description Also known as
English
Hardy spaces associated to Schrödinger operators on product spaces
scientific article; zbMATH DE number 6032350

    Statements

    Hardy spaces associated to Schrödinger operators on product spaces (English)
    0 references
    0 references
    0 references
    10 May 2012
    0 references
    Schrödiner operator
    0 references
    product space
    0 references
    Hardy space
    0 references
    atom
    0 references
    maximal function
    0 references
    area function
    0 references
    heat semigroup
    0 references
    Poisson semigroup
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    Let \(V\in L^1_{\mathrm{loc}}({\mathbb{R}^n})\) be a nonnegative function on \(\mathbb{R}^n\). The Schrödinger operator with potential \(V\) is defined by \(L:=-\Delta+V\). Let \(h_t\) be the kernel of the semigroup \(e^{-tL}\), \(H^2(\mathbb{R}^n\times\mathbb{R}^n)\) be the range of \(L\otimes L\) on \(L^2(\mathbb{R}^n\times\mathbb{R}^n)\), and the product be orthogonal. For a function \(f\in L^2(\mathbb{R}^n\times\mathbb{R}^n)\), define NEWLINE\[NEWLINES_L(f)(x_1,x_2):=\left(\int\!\!\!\!\int_{\substack{{|x_1-y_1|<t_1}\\ {|x_2-y_2|<t_2}}}\left|Q_{t_1^2t_2^2}f(y_1,y_2)\right|^2 \,dy_1dy_2\frac{dt_1}{t_1^{n+1}}\frac{dt_2}{t_2^{n+1}}\right)^{1/2},NEWLINE\]NEWLINE where \(Q_{t_1t_2}f:=(-t_1\frac{d}{dt_1}) (-t_2\frac{d}{dt_2})H_{t_1t_2}f\) and NEWLINE\[NEWLINEH_{t_1t_2}f(y_1,y_2)=\int_{\mathbb{R}^n\times\mathbb{R}^n}h_{t_1}(y_1,z_1) h_{t_2}(y_2,z_2)f(z_1,z_2)dz_1dz_2.NEWLINE\]NEWLINE The space \(H_L^1(\mathbb{R}^n\times\mathbb{R}^n)\) associated with \(L\) is defined as the completion of \(H^2(\mathbb{R}^n\times\mathbb{R}^n)\) in the norm given by \(\|f\|_{H^1_L(\mathbb{R}^n\times\mathbb{R}^n)}:=\|S_L(f)\|_{L^1(\mathbb{R}^{2n})}\). In this paper, the authors establish the atomic characterization and the characterizations in terms of various maximal functions, associated with the heat or the poisson semigroups, of \(H_L^1(\mathbb{R}^n\times\mathbb{R}^n)\) .
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references