On necessary condition for the variable exponent Hardy inequality (Q416320)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On necessary condition for the variable exponent Hardy inequality |
scientific article; zbMATH DE number 6032359
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On necessary condition for the variable exponent Hardy inequality |
scientific article; zbMATH DE number 6032359 |
Statements
On necessary condition for the variable exponent Hardy inequality (English)
0 references
10 May 2012
0 references
Summary: We derive a necessary condition for exponent functions \(p, \beta\) such that the variable exponent Hardy inequality \(||x^{\beta(x)-1} \int^x_0 f(t)dt||_{L^{p(.)}(0,l)} \leq C||x^{\beta(x)} f||_{L^{p(\dot)}(0,l)}\) holds.
0 references