Lebesgue's differentiation theorems in r.i. quasi-Banach spaces and Lorentz spaces \(\Gamma_{p,w}\) (Q416340)

From MaRDI portal





scientific article; zbMATH DE number 6032371
Language Label Description Also known as
English
Lebesgue's differentiation theorems in r.i. quasi-Banach spaces and Lorentz spaces \(\Gamma_{p,w}\)
scientific article; zbMATH DE number 6032371

    Statements

    Lebesgue's differentiation theorems in r.i. quasi-Banach spaces and Lorentz spaces \(\Gamma_{p,w}\) (English)
    0 references
    0 references
    0 references
    10 May 2012
    0 references
    quasi-Banach function space
    0 references
    rearrangement-invariant space
    0 references
    Lorentz space
    0 references
    extended best constant approximant operator
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    Let \(0 < \alpha \leq \infty\), \(L_0\) be the space of (equivalence classes of) measurable real functions on \([0, \alpha)\). For \(f \in L_0\), denote \(f^{**}(t)= \frac{1}{t}\int_0^t f^*(s)ds\), where \(f^*\) is the decreasing rearrangement of \(f\). Let \(0 < p < \infty\) and \(w \in L_0\) be a non-negative weight function. The Lorentz space \(\Gamma_{p,w}\) is the space of those \(f \in L_0\) for which \(\int (f^{**}(t))^p w(t)dt < \infty\). The quasinorm on \(\Gamma_{p,w}\) is defined as \(\|f\|_{\Gamma_{p,w}}= \left(\int (f^{**}(t))^p w(t)dt\right)^{1/p}\).NEWLINENEWLINEA quasi-Banach function space \(E\) on \((0, \alpha)\) is said to have the Lebesgue differentiation property (LDP) if for every \(f \in E\) NEWLINE\[NEWLINE \lim_{\epsilon \to 0} \frac{\|(f - f(t))\chi_{[t-\epsilon, t+\epsilon]}\|_E}{\|\chi_{[t-\epsilon, t+\epsilon]}\|_E} = 0 NEWLINE\]NEWLINE for almost all \(t \in [0, \alpha)\).NEWLINENEWLINEThe authors prove the LDP for order continuous rearrangement-invariant quasi-Banach function spaces on \((0, \infty)\) that satisfy a lower \(\phi\)-estimate for \(\|\cdot\|_E\). Classes of Lorentz space \(\Gamma_{p,w}\) that do have or do not have the LDP are presented.NEWLINENEWLINEApart from that the authors give another type of generalization of the Lebesgue differentiation theorem that establishes conditions for pointwise convergence of the best or extended best constant approximants in Lorentz spaces. It is also shown that the extended best constant approximant operator \(T_{(p,A)}\) assumes a unique constant value for a function \(f \in \Gamma_{p-1,w}, 1 < p < \infty\).
    0 references

    Identifiers