A proof of the \(T_n\) conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns (Q417540)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A proof of the \(T_n\) conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns |
scientific article; zbMATH DE number 6034505
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A proof of the \(T_n\) conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns |
scientific article; zbMATH DE number 6034505 |
Statements
A proof of the \(T_n\) conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns (English)
0 references
14 May 2012
0 references
centralizer
0 references
Jacobian
0 references
tridiagonal sign pattern
0 references
characteristic polynomial
0 references
0.85987043
0 references
0.85473645
0 references
0.8515897
0 references
0 references
0.8461223
0 references
0.84563375
0 references
0.8454225
0 references
This paper proves so-called \(T_n\) conjecture due to \textit{L. Elsner}, \textit{D. D. Olesky} and \textit{P. van den Driessche} [Linear Algebra Appl. 374, 219--230 (2003; Zbl 1033.15004)] which states that for every real monic polynomial \(p(x)\) of degree \(n\geq 2\) there exists an \(n\times n\) tridiagonal sign pattern NEWLINE\[NEWLINE \left[ \begin{matrix} - & + & 0 & \cdots & 0 \\ - & 0 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 0 & + \\ 0 &\cdots & 0 & - & + \end{matrix} \right] NEWLINE\]NEWLINE whose characteristic polynomial is \(p(x)\).
0 references