Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure (Q422899)

From MaRDI portal





scientific article; zbMATH DE number 6036029
Language Label Description Also known as
English
Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure
scientific article; zbMATH DE number 6036029

    Statements

    Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure (English)
    0 references
    0 references
    0 references
    18 May 2012
    0 references
    0 references
    analytic \(p\)-valent functions
    0 references
    Hadamard product
    0 references
    Cauchy-Euler differential equation
    0 references
    Let \(T_{n}(p)\) denote the class of functions of the form NEWLINE\[NEWLINE\displaystyle{f(z)=z^{p}-\sum^{\infty}_{k=n+p} a_{k}z^{k}},\tag{1}NEWLINE\]NEWLINE\(a_{k}\geq 0\), \(p,n \in \mathbb{N} := \{1, 2, 3, \dots\}\), which are analytic and \(p\)-valent in the open unit disk \(\mathbb{U}= \{z \in \mathbb{C}:|z|<1\}\). A function \(f\in T_{n}(p)\) is said to be \(p\)-valently starlike of order \(\alpha\), \(0 \leq \alpha<p\) (\(f \in T^{*}_{n,p}(\alpha)\)), if it satisfies the inequality NEWLINE\[NEWLINE\displaystyle{\mathrm{Re} \left(\frac{zf^{\prime}(z)}{f(z)} \right)>\alpha}NEWLINE\]NEWLINE for \(z \in \mathbb{U}\). Furthermore, a function \(f \in T_{n}(p)\) is said to be \(p\)-valently convex of order \(\alpha\), \(0\leq \alpha<p\) (\(f\in C_{n,p}(\alpha)\)), if it satisfies the inequality NEWLINE\[NEWLINE\displaystyle{\mathrm{Re} \left(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)} \right)>\alpha} NEWLINE\]NEWLINE for \(z \in \mathbb{U}\). Denote by \(f*g\) the Hadamard product (or convolution) of the functions \(f\) and \(g\), that is, if \(f\) is given by (1) and \(g\) is given by NEWLINE\[NEWLINE\displaystyle{g(z)=z^{p}+ \sum^{\infty}_{k=n+p}b_{k}z^{k}}, \tag{2}NEWLINE\]NEWLINEwhere \(p,n \in \mathbb{N}\), then NEWLINE\[NEWLINE\displaystyle{(f*g)(z):=z^{p}- \sum^{\infty}_{k=n+p} a_{k}b_{k}z^{k}=:(g*f)(z)}.NEWLINE\]NEWLINE Let \(S_{n,p}(g; \lambda,\mu, \alpha)\) denote the subclass of \(T_{n}(p)\) consisting of functions \(f\) which satisy the inequality NEWLINE\[NEWLINE\displaystyle{\mathrm{Re} \left(\frac{z(F_{\lambda, \mu}*g)^{\prime}(z)}{(F_{\lambda, \mu}*g)(z)} \right) > \alpha ,}NEWLINE\]NEWLINE where \(0\leq \mu \leq \lambda \leq 1\), \(0\leq \alpha<p\), \(z \in\mathbb{U}\) and NEWLINE\[NEWLINEF_{\lambda,\mu}(z)=\lambda \mu z^{2}f^{\prime\prime}(z)+(\lambda-\mu)zf^{\prime}(z)+(1-\lambda+\mu)f(z).NEWLINE\]NEWLINE Let \(R_{n,p}(g;\lambda,\mu,\alpha,m,u)\) denote the subclass of \(T_{n}(p)\) consisting of functions \(f\) which satisfy the following non-homogenous Cauchy-Euler differential equation: NEWLINE\[NEWLINE\displaystyle{z^{m} \frac{d^{m}w}{dz^{m}}+C^{1}_{m}(u+m-1)z^{m-1} \frac{d^{m-1}w}{dz^{m-1}}+ \dots + C^{m}_{m} w \prod^{m-1}_{j=0}(u+j) =h(z) \prod^{m-1}_{j=0}(u+j+p)},NEWLINE\]NEWLINE where \(w=f(z)\in T_{n}(p)\), \(h\in S_{n,p}(g;\lambda,\mu,\alpha)\), \(m \in \mathbb{N}^{*}\) and \(u\in(-p, \infty)\). The main object of this paper is to investigate the various properties and characteristics of functions belonging to the above-defined classes \(S_{n,p}(g;\lambda,\mu,\alpha)\) and \(R_{n,p}(g;\lambda,\mu,\alpha,m,u)\). Apart from deriving coefficient bounds and distortion inequalities for each of these function classes, the authors establish several inclusion relationships involving the \((n,\delta)\)-neighborhoods of functions belonging to the general function classes which are introduced above.
    0 references

    Identifiers