Some approximation properties of Baskakov-Durrmeyer-Stancu operators (Q422908)

From MaRDI portal





scientific article; zbMATH DE number 6036033
Language Label Description Also known as
English
Some approximation properties of Baskakov-Durrmeyer-Stancu operators
scientific article; zbMATH DE number 6036033

    Statements

    Some approximation properties of Baskakov-Durrmeyer-Stancu operators (English)
    0 references
    0 references
    0 references
    0 references
    18 May 2012
    0 references
    pointwise convergence
    0 references
    asymptotic formula
    0 references
    \(q-\)analogue
    0 references
    Baskakov-Durrmeyer--Stancu operators
    0 references
    moments
    0 references
    recurrence relations
    0 references
    error estimates
    0 references
    The authors introduce a new type of Baskakov-Durrmeyer--Stancu (BDS) operators \(D_n^{(\alpha,\beta)}(f,x)\) defined by NEWLINE\[NEWLINED_n^{(\alpha,\beta)}(f,x)=\sum\limits^{\infty}_{k=1}p_{n,k}(x)\int\limits_0^{\infty}b_{n,k}(t) f\left(\frac{nt+\alpha}{n+\beta}\right)dt+p_{n,0}(x) f\left(\frac{\alpha}{n+\beta}\right), \tag{1} NEWLINE\]NEWLINE where \(\sum\limits^{\infty}_{k=0}p_{n,k}(x)=1, ~\int\limits_0^{\infty}p_{n,k}(x) dx=\frac{1}{n-1},\) \(\sum\limits^{\infty}_{k=0}b_{n,k}(x)=n+1, ~\int\limits_0^{\infty}b_{n,k}(x)=1.\) In Section 2 they estimate moments of these operators and also obtain the recurrence relations for the moments. Some approximation properties and asymptotic formulae for the operators (1) are received in Section 3. In Section 4 better error estimations for operators (1) using the King type approach are given.
    0 references

    Identifiers