Homogeneous components in the moduli space of sheaves and Virasoro characters (Q423696)

From MaRDI portal





scientific article; zbMATH DE number 6042463
Language Label Description Also known as
English
Homogeneous components in the moduli space of sheaves and Virasoro characters
scientific article; zbMATH DE number 6042463

    Statements

    Homogeneous components in the moduli space of sheaves and Virasoro characters (English)
    0 references
    4 June 2012
    0 references
    moduli space of sheaves
    0 references
    Virasoro character
    0 references
    quiver variety
    0 references
    framed sheaf
    0 references
    torus action
    0 references
    connected components of fixed point sets
    0 references
    0 references
    0 references
    Let \(\mathcal M(r, n)\) be the moduli space of framed torsion free sheaves on \(\mathbb P^2\) with rank \(r\) and second Chern class \(n\). There is a natural action of the \((r+2)\)-dimensional complex torus \(T=(\mathbb C^*)^{r+2}\) on \(\mathcal M(r, n)\). More information about moduli spaces \(\mathcal M(r, n)\) can be found in [\textit{H. Nakajima}, Lectures on Hilbert schemes of points on surfaces. University Lecture Series. 18. Providence, RI: American Mathematical Society (AMS) (1999; Zbl 0949.14001)] and [\textit{H.~Nakajima} and \textit{K.~Yoshioka}, Hurtubise, Jacques (ed.) et al., CRM Proceedings \& Lecture Notes 38, 31--101 (2004; Zbl 1080.14016)].NEWLINENEWLINEFor a fixed integer vector \(\vec w=(w_1,\dots, w_r)\in \mathbb Z^r\) and for two fixed positive coprime integers \(\alpha\) and \(\beta\) one defines the subtorus of \(T\) by NEWLINE\[NEWLINE T_{\alpha, \beta}^{\vec w}=\{(t^\alpha, t^\beta, t^{w_1}, t^{w_2},\dots, t^{w_r})\in T \mid t\in \mathbb C^* \}. NEWLINE\]NEWLINE Let \(\mathcal M(r, n)^{T_{\alpha, \beta}^{\vec w}}\) be the subvariety of fixed points of \(\mathcal M(r, n)\) with respect to the action of the subtorus \(T_{\alpha, \beta}^{\vec w}\).NEWLINENEWLINELet \(\vec w(n)\) denote the vector \((\underbrace{1,\dots,1}_{\text{}m} times\)
    0 references

    Identifiers