Quasi-particle fermionic formulas for \((k, 3)\)-admissible configurations (Q424100)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quasi-particle fermionic formulas for \((k, 3)\)-admissible configurations |
scientific article; zbMATH DE number 6039971
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quasi-particle fermionic formulas for \((k, 3)\)-admissible configurations |
scientific article; zbMATH DE number 6039971 |
Statements
Quasi-particle fermionic formulas for \((k, 3)\)-admissible configurations (English)
0 references
31 May 2012
0 references
For an affine Lie algebra \(\hat{\mathfrak{g}}\) and a corresponding standard module \(L(\Lambda)\), it is important to study certain subspaces \(W(\Lambda)\) of \(L(\Lambda)\), called Feigin-Stoyanovsky type subspaces, of the standard module \(L(\Lambda)\). Following work of \textit{G. Georgiev} [J. Pure Appl. Algebra 112, No. 3, 247--286 (1996; Zbl 0871.17018)] and using vertex operator algebra theory, the authors succeed in giving fermionic-type character formulas for \(W(\Lambda)\), when \(\mathfrak{g}=\mathfrak{sl}(3,\mathbb C)\).
0 references
quasi-particle bases
0 references
Feigin-Stoyanovsky type subspaces
0 references
affine Lie algebras
0 references
fermionic-type formulas
0 references
admissible configurations
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references