A simple proof of the generalized Craig-Sakamoto theorem (Q426072)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A simple proof of the generalized Craig-Sakamoto theorem |
scientific article; zbMATH DE number 6044824
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A simple proof of the generalized Craig-Sakamoto theorem |
scientific article; zbMATH DE number 6044824 |
Statements
A simple proof of the generalized Craig-Sakamoto theorem (English)
0 references
11 June 2012
0 references
eigenvalue
0 references
independence
0 references
quadratic form
0 references
symmetric matrix
0 references
matrix identities
0 references
The authors give a short proof of the following generalized Craig-Sakamoto theorem:NEWLINENEWLINELet \(A\) and \(B\) be \(n\times n\) real symmetric matrices with \(a_1, \dots, a_s\) and \(b_1, \dots, b_t\) as their nonzero eigenvalues. Then the following conditions are equivalent:NEWLINENEWLINE(1) \(AB = 0\).NEWLINENEWLINE(2) \(|I_n - xA -yB| = |I_n - xA||I_n - yB|\) for any \(x, y \in \mathbb{R}\).NEWLINENEWLINE(3) \(|I_n - x(A + B)| = |I_n - xA||I_n - xB|\) for any \(x \in \mathbb{R}\).NEWLINENEWLINE(4) The nonzero eigenvalues of \(A + B\) are \(\{a_1, \dots, a_s, b_1, \dots, b_t \}\).
0 references