Standard triples of structured matrix polynomials (Q426077)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Standard triples of structured matrix polynomials |
scientific article; zbMATH DE number 6044827
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Standard triples of structured matrix polynomials |
scientific article; zbMATH DE number 6044827 |
Statements
Standard triples of structured matrix polynomials (English)
0 references
11 June 2012
0 references
The authors study the standard triple for the matrix polynomials \(P(\lambda)\), with structure \(S\), where it is a Hermitian, symmetric, *-even, or odd, or palindromic or some other. They define the notion of an \(S\)-structured standard triple. In the general case, it is shown that \(P(\lambda)\) has structure \(S\) iff it admits an \(S\)-structured standard triple. The important special case of \(S\)-structured Jordan triples is investigated.
0 references
standard triple
0 references
Jordan triple
0 references
structured matrix polynomial
0 references
Hermitian matrix polynomial
0 references
symmetric matrix polynomial
0 references
palindronic matrix polynomial
0 references
even matrix polynomial
0 references
odd matrix polynomial
0 references
0 references
0 references
0 references
0 references
0.92838097
0 references
0 references
0.89141524
0 references
0.8844558
0 references
0.8783338
0 references
0.8775413
0 references
0.8739909
0 references