A note on random \(k\)-SAT for moderately growing \(k\) (Q426783)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on random \(k\)-SAT for moderately growing \(k\) |
scientific article; zbMATH DE number 6045648
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on random \(k\)-SAT for moderately growing \(k\) |
scientific article; zbMATH DE number 6045648 |
Statements
A note on random \(k\)-SAT for moderately growing \(k\) (English)
0 references
12 June 2012
0 references
Summary: Consider a random instance \(I\) of \(k\)-SAT with \(n\) variables and \(m\) clauses. Suppose that \(\theta, c>0\) are any fixed real numbers. Let \(k=k(n)\geq \big(\frac{1}{2}+\theta\big)\log_{2}n\). We prove that \[ \lim_{n\rightarrow\infty}\operatorname{Pr}(I\;\text{is satifiable})=\begin{cases} 1\quad m\leq\big(1-\frac{c}{\sqrt{n}}\big)2^{k}n\ln 2 \\0\quad m\geq\big(1+\frac{c}{\sqrt{n}}\big)2^{k}n\ln 2.\end{cases} \]
0 references
k-SAT
0 references
phase transition
0 references
second moment method
0 references