Hunt's hypothesis (H) and Getoor's conjecture for Lévy processes (Q429286)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hunt's hypothesis (H) and Getoor's conjecture for Lévy processes |
scientific article; zbMATH DE number 6047941
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hunt's hypothesis (H) and Getoor's conjecture for Lévy processes |
scientific article; zbMATH DE number 6047941 |
Statements
Hunt's hypothesis (H) and Getoor's conjecture for Lévy processes (English)
0 references
19 June 2012
0 references
Hunt's hypothesis
0 references
Getoor's conjecture
0 references
Lévy processes
0 references
0 references
0 references
0 references
0.93309426
0 references
0.9289417
0 references
0.91777945
0 references
0 references
0.89360285
0 references
0.8863139
0 references
0.87890786
0 references
0.86733556
0 references
Let \(X\) be a Lévy process on \(\mathbb R^n\), with Lévy-Khinchin exponent \((a, A, \mu )\). The authors prove the following results concerning the fact that \(X\) satisfies Hunt's hypothesis \((H)\):NEWLINENEWLINE(i) if the matrix \(A\) is non-degenerate, then \(X\) satisfies \((H)\);NEWLINENEWLINE(ii) if \(\mu (\mathbb R^n \setminus \sqrt{A} \mathbb R^n) < \infty \), then \(X\) satisfies \((H)\) iff the equation NEWLINE\[NEWLINE\sqrt{A} y = - a - \int _ {\{x \in \mathbb R^n \setminus \sqrt{A} \mathbb R^n; |x| < 1 \} } x \mu (d x) NEWLINE\]NEWLINE has at least one solution \(y \in \mathbb R^n\);NEWLINENEWLINE(iii) if \(X\) is a subordinator and satisfies \((H)\), then its drift coefficient is \(0\).
0 references