The Pexider type generalization of the Minkowski inequality (Q432371)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Pexider type generalization of the Minkowski inequality |
scientific article; zbMATH DE number 6052853
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Pexider type generalization of the Minkowski inequality |
scientific article; zbMATH DE number 6052853 |
Statements
The Pexider type generalization of the Minkowski inequality (English)
0 references
4 July 2012
0 references
Minkowski inequality, converse theorem for Minkowski inequality, Pexider type of Minkowski inequality
0 references
measure space
0 references
convexity
0 references
geometrical convexity
0 references
0.9167476
0 references
0.9070847
0 references
0.9036649
0 references
0.90320057
0 references
Let \(\varphi :(0,\infty) \rightarrow (0,\infty)\) be a bijection. The functional \(\mathbb{P}_{\varphi} : S \rightarrow [0,\infty)\) is given byNEWLINENEWLINENEWLINE\[NEWLINE\mathbb{P}_{\varphi} ({\mathbf x})=\begin{cases} \varphi^{-1}\left( \int_{\Omega({\mathbf x})} \varphi \circ |{\mathbf x}| d\mu \right), & \mu(\Omega({\mathbf x})) >0 \cr 0, & \mu(\Omega(\mathbf x))=0\cr \end{cases} NEWLINE\]NEWLINE where \((\Omega, \Sigma, \mu)\) is a measure space, \(S\) is a linear space of all \(\mu\)-integrable simple functions \(\mathbf x : \Omega \rightarrow \mathbb{R}\), \(\Omega({\mathbf x})=\{\omega \in \Omega : {\mathbf x}(\omega)\not= 0\}\) and \(S_+=\{{\mathbf x}\in S: {\mathbf x} \geq 0 \}\).NEWLINENEWLINEInequalityNEWLINENEWLINENEWLINE\[NEWLINE \mathbb{P}_{\varphi} ({\mathbf x}+{\mathbf y}) \leq \mathbb{P}_{\psi} ({\mathbf x}) +\mathbb{P}_{\gamma} ({\mathbf y}), \;\;\;{\mathbf x}, {\mathbf y} \in S_+, \;\;\;\;\;\;(1) NEWLINE\]NEWLINE is called Pexiderization of the Minkowski inequality.NEWLINENEWLINEAuthor gives theorems of existence of the broad classes of triples \((\varphi, \psi, \gamma)\) of non-power functions satisfying inequality (1) in the case when the underlying measure space \((\Omega, \Sigma, \mu)\) satisfies some additional conditions. Main results are given in the following theorems.NEWLINENEWLINETheorem 1. Let \((\Omega, \Sigma, \mu)\) be a measure space with \(\Sigma = \{\emptyset, \Omega, A, \Omega\backslash A\}\) for some \(A\subset \Omega\) such that \(\mu(A)\), \(\mu(\Omega\backslash A)\) are positive real numbers and \(\min \{ \mu(A), \mu(\Omega\backslash A)\} \geq 1\). Suppose that \(\varphi, \psi, \gamma : (0,\infty) \rightarrow (0,\infty)\) are bijective and such that \(\varphi \) is geometrically convex, \(\varphi'_-\) and \(\gamma'_-\) (or \(\varphi'_+\) and \(\gamma'_+\)) exist and the functions \(u\mapsto \frac{\varphi(u)}{u}\), \(u\mapsto \frac{\gamma(u)}{u}\) are nondecreasing. Suppose that functions \(\frac{\varphi}{\psi}\) and \(\frac{\varphi}{\gamma}\) are nondecreasing and for each \(r\in \mu(\Sigma)\backslash \{0\}\) the functions \(f_r=\varphi^{-1}\circ (r\varphi)\), \(g_r=\psi^{-1}\circ (r\psi)\), \(h_r=\gamma^{-1}\circ (r\gamma)\) satisfy the ``Pexiderized'' subadditivity condition NEWLINE\[NEWLINEf_r(u+v) \leq g_r(u)+h_r(v), \;\;u,v>0.NEWLINE\]NEWLINE Then inequality (1) holds for \({\mathbf x}, {\mathbf y} \in S_+\).NEWLINENEWLINENEWLINENEWLINENEWLINENEWLINETheorem 2. Let \((\Omega, \Sigma, \mu)\) be a measure space with \(\mu(\Omega)=1\), \(\Sigma = \{\emptyset, \Omega, A, \Omega\backslash A\}\) for some \(A\subset \Omega\) such that \(0<\mu(A)<1\). Suppose that \(\varphi, \psi, \gamma : (0,\infty) \rightarrow (0,\infty)\) are bijective.NEWLINENEWLINE(i) If \(\varphi \) is increasing, then inequality (1) holds if and only if the function \(\Phi :(0,\infty)^2 \rightarrow (0,\infty)\) defined by \(\Phi(s,t)=\varphi(\psi^{-1}(s)+\gamma^{-1}(t)), \;\;s,t>0\) is concave.NEWLINENEWLINE(ii) If \(\varphi \) is decreasing, then inequality (1) holds if and only if the function \(\Phi\) is \(\mu(A)\)-convex.
0 references