A family of summation formulas on the Fox-Wright function (Q432374)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A family of summation formulas on the Fox-Wright function |
scientific article; zbMATH DE number 6052855
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A family of summation formulas on the Fox-Wright function |
scientific article; zbMATH DE number 6052855 |
Statements
A family of summation formulas on the Fox-Wright function (English)
0 references
4 July 2012
0 references
Fox-Wright function
0 references
Gould-Hsu inversions
0 references
Pfaff-Saalschütz theorem
0 references
The Fox-Wright function \(_p\Psi_q\) is defined by NEWLINE\[NEWLINE _p\Psi_q\left[\left.\begin{matrix} (\alpha_1,A_1), \dotsc, (\alpha_p,A_p)\\ (\beta_1,B_1), \dotsc, (\beta_q,B_q)\end{matrix} \right|z\right]=\sum_{n=0}^\infty\frac{\prod_{i=1}^p\Gamma(\alpha_i+A_ik)}{\prod_{j=1}^q\Gamma(\beta_j+B_jk)}\frac{z^k}{k!}.NEWLINE\]NEWLINE The authors prove dozens of summation formulas for these functions for special values of \(p\) and \(q\) and for special arguments. To show some of the results, we list two formulas:NEWLINENEWLINENEWLINENEWLINE\[NEWLINE_2\Psi_3\left[\left.\begin{matrix} (1+a+n,b-1),(3a,3b-1)\\ (1+3n,-1),(a-n,b),(1+3a,3b-2)\end{matrix}\right|-\frac13\right]=\frac{(-1)^n}{3n!27^n},NEWLINE\]NEWLINE NEWLINE\[NEWLINE_2\Psi_3\left[\left.\begin{matrix}(1+a+n,b-1),(3a,3b-1)\\ (2+3n,-1),(a-n-1,b),(1+3a,3b-2)\end{matrix}\right|-\frac13\right]=(-b)\frac{(-1)^n}{3n!27^n}.NEWLINE\]
0 references