A family of summation formulas on the Fox-Wright function (Q432374)

From MaRDI portal





scientific article; zbMATH DE number 6052855
Language Label Description Also known as
English
A family of summation formulas on the Fox-Wright function
scientific article; zbMATH DE number 6052855

    Statements

    A family of summation formulas on the Fox-Wright function (English)
    0 references
    0 references
    0 references
    0 references
    4 July 2012
    0 references
    Fox-Wright function
    0 references
    Gould-Hsu inversions
    0 references
    Pfaff-Saalschütz theorem
    0 references
    0 references
    The Fox-Wright function \(_p\Psi_q\) is defined by NEWLINE\[NEWLINE _p\Psi_q\left[\left.\begin{matrix} (\alpha_1,A_1), \dotsc, (\alpha_p,A_p)\\ (\beta_1,B_1), \dotsc, (\beta_q,B_q)\end{matrix} \right|z\right]=\sum_{n=0}^\infty\frac{\prod_{i=1}^p\Gamma(\alpha_i+A_ik)}{\prod_{j=1}^q\Gamma(\beta_j+B_jk)}\frac{z^k}{k!}.NEWLINE\]NEWLINE The authors prove dozens of summation formulas for these functions for special values of \(p\) and \(q\) and for special arguments. To show some of the results, we list two formulas:NEWLINENEWLINENEWLINENEWLINE\[NEWLINE_2\Psi_3\left[\left.\begin{matrix} (1+a+n,b-1),(3a,3b-1)\\ (1+3n,-1),(a-n,b),(1+3a,3b-2)\end{matrix}\right|-\frac13\right]=\frac{(-1)^n}{3n!27^n},NEWLINE\]NEWLINE NEWLINE\[NEWLINE_2\Psi_3\left[\left.\begin{matrix}(1+a+n,b-1),(3a,3b-1)\\ (2+3n,-1),(a-n-1,b),(1+3a,3b-2)\end{matrix}\right|-\frac13\right]=(-b)\frac{(-1)^n}{3n!27^n}.NEWLINE\]
    0 references

    Identifiers