Equivalence classes of linear mappings on \(\mathcal B(\mathcal M)\) (Q432520)

From MaRDI portal





scientific article; zbMATH DE number 6052947
Language Label Description Also known as
English
Equivalence classes of linear mappings on \(\mathcal B(\mathcal M)\)
scientific article; zbMATH DE number 6052947

    Statements

    Equivalence classes of linear mappings on \(\mathcal B(\mathcal M)\) (English)
    0 references
    0 references
    0 references
    4 July 2012
    0 references
    Let \({\mathcal B}({\mathcal M})\) the \(C^*\)-algebra of all adjointable operators on a Hilbert \(C^*\)-module \({\mathcal M}\) over a \(C^*\)-algebra \({\mathcal A}\), and \({\mathcal L}({\mathcal B}({\mathcal M}))\) be the algebra of all linear operators on \({\mathcal B}({\mathcal M})\). The authors define and study on \({\mathcal L}({\mathcal B}({\mathcal M}))\) certain equivalence relations coming from different classes and properties of adjointable operators on \({\mathcal B}({\mathcal M})\) such as \({\mathcal A}\)-Fredholmness, semi-\({\mathcal A}\)-Fredholmness, compactness, and generalized invertibility.
    0 references
    Hilbert \(C^*\)-module
    0 references
    \(\mathcal A\)-Fredholm operator
    0 references
    semi-\(\mathcal A\)-Fredhom operator
    0 references
    generalized invertible operator
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references