Eigenvalues of a class of regular fourth-order Sturm-Liouville problems (Q440951)

From MaRDI portal





scientific article; zbMATH DE number 6068406
Language Label Description Also known as
English
Eigenvalues of a class of regular fourth-order Sturm-Liouville problems
scientific article; zbMATH DE number 6068406

    Statements

    Eigenvalues of a class of regular fourth-order Sturm-Liouville problems (English)
    0 references
    0 references
    0 references
    19 August 2012
    0 references
    fourth-order Sturm-Liouville problems
    0 references
    eigenvalues
    0 references
    dependence of eigenvalues on the boundary
    0 references
    The paper deals with the eigenvalue problem for the fourth-order Sturm-Liouville equation NEWLINE\[NEWLINE(p(x)y'')''+ q(x)y = \lambda w(x)y NEWLINE\]NEWLINE with boundary conditions NEWLINE\[NEWLINE A\left[ y(a),y'(a) ,(py'')(a) , (py'')'(a) \right]^{\top}+ B\left[ y(b),y'(b),(py'')(b), (py'')'(b) \right]^{\top}=\left[ 0, 0,0 , 0 \right]^{\top}.NEWLINE\]NEWLINE The authors study separated and coupled conditions. It is shown that the eigenvalues are differentiable functions of all parameters, i.e., the endpoints \(a, b\), the boundary conditions \(A, B\), the coefficients \(p, q\) and the weight function \(w\).
    0 references

    Identifiers