Elementary trigonometric sums related to quadratic residues (Q442464)

From MaRDI portal





scientific article; zbMATH DE number 6064839
Language Label Description Also known as
English
Elementary trigonometric sums related to quadratic residues
scientific article; zbMATH DE number 6064839

    Statements

    Elementary trigonometric sums related to quadratic residues (English)
    0 references
    0 references
    0 references
    0 references
    11 August 2012
    0 references
    quadratic Gauss sums
    0 references
    trigonometric sums
    0 references
    class number
    0 references
    complex quadratic number field
    0 references
    Dirichlet's class number formula
    0 references
    quadratic residues
    0 references
    Let \(p\) be an odd prime number. The sums NEWLINE\[NEWLINE T(p) = \sqrt{p} \sum_{n=1}^{(p-1)/2} \tan \frac{\pi n^2}p NEWLINE\]NEWLINE and NEWLINE\[NEWLINE C(p) = \sqrt{p} \sum_{n=1}^{(p-1)/2} \cot \frac{\pi n^2}p NEWLINE\]NEWLINE have been investigated in detail since they are related to quadratic Gauss sums and Dirichlet's class number formulas. In particular, for primes \(p \equiv 3 \bmod 4\), the sum \(T(p)\) is, up to a trivial factor depending on \(p\) modulo \(8\), essentially \(p\) times the class number of \(\mathbb Q(\sqrt{-p}\,)\). In this article, the authors derive several elementary properties of these sums using elementary means.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references