Explicit relations between pair correlation of zeros and primes in short intervals (Q442501)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Explicit relations between pair correlation of zeros and primes in short intervals |
scientific article; zbMATH DE number 6609432
- An extension of the pair-correlation conjecture and applications
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Explicit relations between pair correlation of zeros and primes in short intervals |
scientific article; zbMATH DE number 6609432 |
|
Statements
Explicit relations between pair correlation of zeros and primes in short intervals (English)
0 references
An extension of the pair-correlation conjecture and applications (English)
0 references
1 August 2012
0 references
5 August 2016
0 references
primes in short intervals
0 references
Riemann zeta-function
0 references
pair correlation of zeros
0 references
Riemann zeta function
0 references
prime number formula
0 references
Let \(\zeta(s)\) denote the Riemann zeta-function, and let \(\rho=\beta+i\gamma\) denote a nontrivial zero of \(\zeta(s)\). Montgomery's pair correlation function is defined as NEWLINE\[NEWLINE F(X,T) = \sum_{0<\gamma, \gamma'\leq T} X^{i(\gamma-\gamma')} w(\gamma-\gamma'), \quad w(u)=\frac{4}{4+u^2} NEWLINE\]NEWLINE where the sum runs over two sets of ordinates of zeros of \(\zeta(s)\). The paper under review explores the equivalence between the asymptotic behavior of the function \(F(X,T)\) and the distribution of primes in short intervals extending and improving results of \textit{T. H. Chan} [J. Lond. Math. Soc. (2) 68 (2003) 579--598; Zbl 1054.11047]. To state the main results, write NEWLINE\[NEWLINE F(X,T) = \frac{T}{2\pi} \left( \log \frac{T}{2\pi} - 1 \right) + R_F(X,T) NEWLINE\]NEWLINE and write NEWLINE\[NEWLINE \int_X^{2X} \left( \psi(x+\theta x)-\psi(x)-\theta x \right)^2 dx = \frac{3}{2} X^2 \theta \left( \log(1/\theta)+C\right) + R_J(X,\theta), NEWLINE\]NEWLINE where \(\psi(x)=\sum_{n\leq x} \Lambda(n)\) is the usual summatory function of von Mangoldt's function \(\Lambda(n)\) and \(C=1-\gamma_0-\log 2\pi\) (\(\gamma_0\) is Euler's constant). Assuming the Riemann hypothesis (RH), the authors investigate the relationship between the error terms \(R_F(X,T)\) and \(R_J(X,\theta)\) with \(X, T,\) and \(\theta\) in suitable ranges.NEWLINENEWLINEThey prove:NEWLINENEWLINE1. Assume RH and let \(0<\alpha <1\), \(\beta\geq 0\), and \(1\leq A_1 \leq A_2\). If NEWLINE\[NEWLINE R_F(X,T) \ll T^{1-\alpha} \log^{-\beta}T NEWLINE\]NEWLINE uniformly for \(X^{1/A_2}/\log^{(3+\beta)}X\leq T \leq X^{1/A_1}/\log^{(3+\beta)}X\), then NEWLINE\[NEWLINE R_J(X,\theta) \ll X^2 \theta^{1+\alpha/2} \log^{(1-\beta)/2}(1/\theta) NEWLINE\]NEWLINE uniformly for \(X^{-1/A_1(1+\alpha)} \leq \theta \leq X^{-1/A_2(1-\alpha)}\).NEWLINENEWLINE2. Assume RH and let \(0<\alpha <1\), \(\beta\geq 0\), \((\alpha,\beta)\neq (0,0)\), and \(1\leq A_1 \leq A_2\). If NEWLINE\[NEWLINE R_J(X,\theta) \ll X^2 \theta^{1+\alpha} \log^{-\beta}(1/\theta) NEWLINE\]NEWLINE uniformly for \(X^{-(\alpha/2+1)/A_1}/\log^{(3+\beta)}X \leq \theta \leq X^{-1/A_2}/\log^{4(\beta+2)/3}X\), then NEWLINE\[NEWLINE R_F(X,T) \ll T^{1-\alpha/(\alpha+3)} (\log T)^{(\alpha-\beta+2)/(\alpha+3)} NEWLINE\]NEWLINE uniformly for \(X^{(\alpha+3)/3A_2(1-\alpha)} \leq T \leq X^{(\alpha+3)/3A_1}\).NEWLINENEWLINEThe authors also discuss the relationship between these results and the integral NEWLINE\[NEWLINE \int_X^{2X} \left( \psi(x+h)-\psi(x)-h \right)^2 dx NEWLINE\]NEWLINE which they note is perhaps the ``more natural'' way to study primes in short intervals.
0 references