Maximal, potential and singular type operators on Herz spaces with variable exponents (Q442505)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Maximal, potential and singular type operators on Herz spaces with variable exponents |
scientific article; zbMATH DE number 6062864
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Maximal, potential and singular type operators on Herz spaces with variable exponents |
scientific article; zbMATH DE number 6062864 |
Statements
Maximal, potential and singular type operators on Herz spaces with variable exponents (English)
0 references
1 August 2012
0 references
Herz space
0 references
variable exponent
0 references
sublinear operator
0 references
maximal operator
0 references
fractional integral operator
0 references
Calderón-Zygmund operator
0 references
0 references
0 references
The main purpose of this paper is to consider the variable exponent homogeneous and inhomogeneous Herz spaces and give boundedness results for a wide class of classical operators, including maximal operators, fractional integral operators and Calderón-Zygmund operators, acting on such Herz spaces. We denote by \(\mathcal{P}(\mathbb{R}^n)\) the set of all measurable functions \(p: \mathbb{R}^n \rightarrow [1, \infty]\). For \(p \in \mathcal{P}(\mathbb{R}^n)\), we use the notation NEWLINE\[NEWLINE p^+={\text{ ess\;sup}}_{\mathbb{R}^n}p(x),\;\;p^-={\text{ ess\;inf}}_{\mathbb{R}^n}p(x). NEWLINE\]NEWLINE The variable exponent Lebesgue space \(L^{p(\cdot)}(\mathbb{R}^n)\) is the class of all measurable functions \(f\) on \(\mathbb{R}^n\) such that the modular NEWLINE\[NEWLINE \rho_{p(\cdot)}(f)=\int_{\mathbb{R}^n}|f(x)|^{p(x)}\;dx NEWLINE\]NEWLINE is finite. This is a Banach function space equipped with the norm NEWLINE\[NEWLINE ||f||_{p(\cdot)}=\inf \{ \mu >0: \rho_{p(\cdot)}(\frac{f}{\mu}) \leq 1 \}. NEWLINE\]NEWLINE We set \(B_{k}=B(0, 2^k),\;\;R_{k}=B_{k}\setminus B_{k-1}\) and \(\chi_{k}=\chi_{R_{k}}, \;\;k \in \mathbb{Z}\).NEWLINENEWLINELet \(0 < q \leq \infty,\;\;p \in \mathcal{P}(\mathbb{R}^n)\) and \(\alpha \in L^{\infty}(\mathbb{R}^n)\). The inhomogeneous Herz space \(K^{\alpha(\cdot)}_{p(\cdot),q}(\mathbb{R}^n)\) consists of all \(f \in L^{p(\cdot)}_{loc}(\mathbb{R}^n)\) such that NEWLINE\[NEWLINE ||f||_{K^{\alpha(\cdot)}_{p(\cdot),q}}=||f\chi_{B_{0}}||_{p(\cdot)}+ (\sum_{k \geq 1}||2^{k\alpha(\cdot)}f\chi_{k}||_{p(\cdot)}^q)^{1/q} < \infty. NEWLINE\]NEWLINE The homogeneous Herz space \(\dot{K}^{\alpha(\cdot)}_{p(\cdot),q}(\mathbb{R}^n)\) is defined as the set of all \(f \in L^{p(\cdot)}_{loc}(\mathbb{R}^n \setminus \{ 0 \})\) such that NEWLINE\[NEWLINE ||f||_{\dot{K}^{\alpha(\cdot)}_{p(\cdot),q}}= (\sum_{k \in \mathbb{Z}}||2^{k\alpha(\cdot)}f\chi_{k}||_{p(\cdot)}^q)^{1/q} <\infty. NEWLINE\]NEWLINE We say that a function \(g : \mathbb{R}^n \rightarrow \mathbb{R}\) is log-Hölder continuous at the origin, if NEWLINE\[NEWLINE |g(x)-g(0)| \leq \frac{c_{log}}{\log (e+1/|x|)} NEWLINE\]NEWLINE for all \(x \in \mathbb{R}^n\). If, for some \(g_{\infty} \in \mathbb{R}\) and \(c_{log}>0\), there holds NEWLINE\[NEWLINE |g(x)-g_{\infty}|\leq \frac{c_{log}}{\log (e+|x|)} NEWLINE\]NEWLINE for all \(x \in \mathbb{R}^n\), then we say that \(g\) is log-Hölder continuous at infinity. By \(\mathcal{P}^{log}_{0}(\mathbb{R}^n)\) and \(\mathcal{P}^{log}_{\infty}(\mathbb{R}^n)\) we denote the class of all exponents \(p \in \mathcal{P}(\mathbb{R}^n)\) which are log-Hölder continuous at the origin and at infinity, respectivly, with \(p_{\infty}=\lim_{|x| \rightarrow \infty}p(x)\). Let \(1 = \frac{1}{p(x)}+\frac{1}{p'(x)}\) and let \(p^{*}\) be the Sobolev exponent defined by \(\frac{1}{p^*(x)}=\frac{1}{p(x)}-\frac{\lambda}{n},\;\;\;0 < \lambda < n\).NEWLINENEWLINEWe consider sublinear operators satisfying the size conditions NEWLINE\[NEWLINE |Tf(x)| \leq C\int_{\mathbb{R}^n}\frac{|f(y)|}{|x-y|^n}\;dy,\;\;\;\;x \notin {\text{ supp}} f\;\;\;(*) NEWLINE\]NEWLINE and NEWLINE\[NEWLINE |T_{\lambda}f(x)| \leq C\int_{\mathbb{R}^n}\frac{|f(y)|}{|x-y|^{n-\lambda}} \;dy,\;\;\;\;x \notin {\text{ supp}} f\;\;\;(**) NEWLINE\]NEWLINE for integrable and compactly supported functions \(f\). The condition (\(*\)) is satisfied by several classical operators such as Calderón-Zygmund operators, the Carleson maximal operators and Hardy-Littlewood maximal operators. The Riesz potential operators and the fractional maximal operators satisfy the condition (\(**\)). The authors prove the following main results.NEWLINENEWLINETheorem A. Let \(0 < q \leq \infty\).NEWLINENEWLINE{(i)} Let \(p \in \mathcal{P}_{\infty}^{log}(\mathbb{R}^n)\) with \(1 <p^- \leq p^+ < \infty\) and let \(\alpha \in L^{\infty}(\mathbb{R}^n)\) be log-Hölder continuous at infinity with NEWLINE\[NEWLINE -\frac{n}{p_{\infty}} < \alpha_{\infty} < \frac{n}{p'_{\infty}}. NEWLINE\]NEWLINE Suppose that \(T\) is a sublinear operator satisfying \((*)\). If \(T\) is bounded on \(L^{p(\cdot)}(\mathbb{R}^n)\), then \(T\) is bounded on \(K^{\alpha(\cdot)}_{p(\cdot),q}(\mathbb{R}^n)\).NEWLINENEWLINE{(ii)} Let \(p \in \mathcal{P}_{0}^{log}(\mathbb{R}^n)\cap \mathcal{P}^{log}_{\infty}(\mathbb{R}^n)\) with \(1 < p^- \leq p^+ < \infty\) and let \(\alpha \in L^{\infty}(\mathbb{R}^n)\) be log-Hölder continuous, both at the origin and at infinity, such that NEWLINE\[NEWLINE -\frac{n}{p^+} < \alpha^- \leq \alpha^+ < n(1-\frac{1}{p^-}). NEWLINE\]NEWLINE Then every sublinear operator \(T\) satisfying \((*)\) ,which is bounded on \(L^{p(\cdot)}(\mathbb{R}^n)\), is also bounded on \(\dot{K}^{\alpha(\cdot)}_{p(\cdot),q}(\mathbb{R}^n)\).NEWLINENEWLINETheorem B. Let \(0 < \lambda < n,\;0 < q_{0} \leq q_{1} \leq \infty\).NEWLINENEWLINE{(i)} Let \(p \in \mathcal{P}^{loc}_{\infty}(\mathbb{R}^n)\) with \(1 < p^- \leq p^+ < \frac{n}{\lambda}\), and let \(\alpha \in L^{\infty}(\mathbb{R}^n)\) be log-Hölder continuous at infinity. IfNEWLINE\[NEWLINE \lambda-\frac{n}{p_{\infty}} < \alpha_{\infty} < \frac{n}{p'_{\infty}}, NEWLINE\]NEWLINE then every sublinear operator \(T_{\lambda}\) satisfying \((**)\) , which is bounded from \(L^{p(\cdot)}(\mathbb{R}^n)\) into \(L^{p^*(\cdot)}(\mathbb{R}^n)\), is also bounded from \(K^{\alpha(\cdot)}_{p(\cdot),q_{0}}(\mathbb{R}^n)\) into \(K^{\alpha(\cdot)}_{p^*(\cdot),q_{1}}(\mathbb{R}^n)\).NEWLINENEWLINE{(ii)} Let \(p \in \mathcal{P}^{log}_{0}(\mathbb{R}^n) \cap \mathcal{P}^{log}_{\infty}(\mathbb{R}^n)\) and let \(\alpha \in L^{\infty}(\mathbb{R}^n)\) be log-Hölder continous, both at the origin and at infinity, such that \(1< p^- \leq p^+ < \frac{n}{\lambda}\) and NEWLINE\[NEWLINE \lambda - \frac{n}{p^+} < \alpha^- \leq \alpha^+ < n(1-\frac{1}{p^-}). NEWLINE\]NEWLINE Then every sublinear operator \(T_{\lambda}\) satisfying \((**)\) and bounded from \(L^{p(\cdot)}(\mathbb{R}^n)\) into \(L^{p^*(\cdot)}(\mathbb{R}^n)\), is also bounded from \(\dot{K}^{\alpha(\cdot)}_{p(\cdot),q_{0}}(\mathbb{R}^n)\) into \(\dot{K}^{\alpha(\cdot)}_{p^*(\cdot),q_{1}}(\mathbb{R}^n)\).
0 references