Global stability and Hopf bifurcation for Gause-type predator-prey system (Q442840)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global stability and Hopf bifurcation for Gause-type predator-prey system |
scientific article; zbMATH DE number 6063343
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global stability and Hopf bifurcation for Gause-type predator-prey system |
scientific article; zbMATH DE number 6063343 |
Statements
Global stability and Hopf bifurcation for Gause-type predator-prey system (English)
0 references
6 August 2012
0 references
Summary: A class of three-dimensional Gause-type predator-prey models is considered. Firstly, local stability of the equilibrium indicating the extinction of top-predator is obtained. Secondly, we analyze the stability of the coexisting equilibrium of the predator-prey system with time delay when the predator catches the prey of pregnancy or with growth time. The delay can lead to periodic solutions, which is consistent with the law of growth for birds and some mammals. Further, an explicit formula is given which determines the stability of the bifurcating periodic solutions theoretically and the existence of periodic solutions is displayed by numerical simulations.
0 references
0 references
0 references
0 references
0 references