Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos (Q442868)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos |
scientific article; zbMATH DE number 6063359
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos |
scientific article; zbMATH DE number 6063359 |
Statements
Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos (English)
0 references
6 August 2012
0 references
Summary: A kind of nonlinear finance system with time-delayed feedback is considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associate characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, by using the normal form theory and center manifold argument, we derive the explicit formulas determining the stability, direction, and other properties of bifurcating periodic solutions. Finally, we give several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic orbit.
0 references
0 references