Convergence rates of limit distribution of maxima of lognormal samples (Q448264)

From MaRDI portal





scientific article; zbMATH DE number 6074416
Language Label Description Also known as
English
Convergence rates of limit distribution of maxima of lognormal samples
scientific article; zbMATH DE number 6074416

    Statements

    Convergence rates of limit distribution of maxima of lognormal samples (English)
    0 references
    0 references
    0 references
    30 August 2012
    0 references
    extreme value distributions
    0 references
    logarithmic normal distributions
    0 references
    maxima
    0 references
    uniform convergence rates
    0 references
    It is known that linearly normalized partial maxima of independent and identically distributed (iid) random variables (rvs) from the lognormal distribution converge weakly to a rv having the Gumbel distribution \(\Lambda.\) In this paper the authors prove the following result: If \(\{X_n, n \geq 1\}\) is a sequence of iid rvs with common lognormal distribution \(F\) and if the norming constants \(a_n\) and \(b_n\) are given by the solution of the equations NEWLINE\[NEWLINE2\pi (\log b_n)^2exp(\log b_n)^2=n^2,\;a_n=b_n/\log{b_n},NEWLINE\]NEWLINE then there exist absolute constants \(0< C_1 < C_2\) such that NEWLINE\[NEWLINEC_1/\sqrt{\log n} < \sup_{x \in R}\mid F^n(a_n x + b_n) - \Lambda(x)\mid <C_2/\sqrt{\log n},NEWLINE\]NEWLINE for \(n \geq 2\). And for the norming constants NEWLINE\[NEWLINE\alpha_n=exp{\sqrt{2 \log n}/\sqrt{2 \log n}}NEWLINE\]NEWLINE and NEWLINE\[NEWLINE\beta_n = \exp \sqrt{2 \log n}\left( 1 - \frac{\log 4\pi + \log \log n}{2 \sqrt{2 \log n}}\right),NEWLINE\]NEWLINE NEWLINE\[NEWLINEF^n(\alpha_n x + \beta_n) - \Lambda(x)\sim -\frac{e^{-x}\exp e^{-x}}{8} \frac{(\log \log n)^2}{\sqrt{2 \log n}}NEWLINE\]NEWLINE for large \(n\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references