Multipliers in holomorphic mean Lipschitz spaces on the unit ball (Q448838)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multipliers in holomorphic mean Lipschitz spaces on the unit ball |
scientific article; zbMATH DE number 6078826
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multipliers in holomorphic mean Lipschitz spaces on the unit ball |
scientific article; zbMATH DE number 6078826 |
Statements
Multipliers in holomorphic mean Lipschitz spaces on the unit ball (English)
0 references
7 September 2012
0 references
Summary: For \(1 \leq p \leq \infty\) and \(s > 0\), let \(\Lambda^p_s\) be the holomorphic mean Lipschitz spaces on the unit ball in \(\mathbb C^n\). We shown that if \(s > n/p\), then \(\Lambda^p_s\) is a multiplicative algebra, and if \(s \leq n/p\), then \(\Lambda^p_s\) is not a multiplicative algebra. We give some sufficient conditions for a holomorphic function to be a pointwise multiplier of \(\Lambda^p_{n/p}\).
0 references
holomorphic mean Lipschitz spaces
0 references
unit ball
0 references
multiplier
0 references
0 references
0 references