Precise asymptotics in the law of iterated logarithm for the first moment convergence of i.i.d. random variables (Q449022)

From MaRDI portal





scientific article; zbMATH DE number 6080954
Language Label Description Also known as
English
Precise asymptotics in the law of iterated logarithm for the first moment convergence of i.i.d. random variables
scientific article; zbMATH DE number 6080954

    Statements

    Precise asymptotics in the law of iterated logarithm for the first moment convergence of i.i.d. random variables (English)
    0 references
    11 September 2012
    0 references
    moment convergence
    0 references
    law of the iterated logarithm
    0 references
    i.i.d. random variables
    0 references
    0 references
    0 references
    Let \(\{X_{n},n\geq 1\}\) be a sequence of i.i.d. random variables, set \( S_{n}=X_{1}+\dotsb+X_{n},\) \(n\geq 1,\) and let \(d,\beta ,\sigma >0.\) Under necessary and sufficient moment conditions, the authors compute NEWLINE\[NEWLINE \lim\limits_{\varepsilon \searrow 0}\varepsilon ^{2\beta/d}\sum\limits_{n\geq 3}a_{n}\operatorname{E}[\left| S_{n}\right| -b_{n}]_{+},NEWLINE\]NEWLINE where \(a_{n}=(\log \log n)^{\beta -1}/n^{3/2}\log n\) and \(b_{n}=\varepsilon \sigma \sqrt{n}(\log \log n)^{d/2}\).
    0 references

    Identifiers