Weighted Lipschitz estimates for commutators of fractional integrals with homogeneous kernels (Q449591)

From MaRDI portal





scientific article; zbMATH DE number 6074781
Language Label Description Also known as
English
Weighted Lipschitz estimates for commutators of fractional integrals with homogeneous kernels
scientific article; zbMATH DE number 6074781

    Statements

    Weighted Lipschitz estimates for commutators of fractional integrals with homogeneous kernels (English)
    0 references
    0 references
    0 references
    0 references
    31 August 2012
    0 references
    0 references
    commutator
    0 references
    fractional integral operator
    0 references
    weighted Lebesgue space
    0 references
    weighted Lipschitz function
    0 references
    Conditions are found that imply the boundedness on weighted Lebesgue spaces of the commutator \([b,T_{\Omega,\alpha}]\) generated by a weighted Lipschitz function \(b\) and the fractional integral operator NEWLINE\[NEWLINE T_{\Omega,\alpha}f(x):= \int_{\mathbb{R}^n}\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}f(y)dy, NEWLINE\]NEWLINE with homogeneous kernel \(\Omega\) satisfying certain Dini type conditions.
    0 references

    Identifiers