Refined asymptotics of the spectral gap for the Mathieu operator (Q450996)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Refined asymptotics of the spectral gap for the Mathieu operator |
scientific article; zbMATH DE number 6086924
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Refined asymptotics of the spectral gap for the Mathieu operator |
scientific article; zbMATH DE number 6086924 |
Statements
Refined asymptotics of the spectral gap for the Mathieu operator (English)
0 references
26 September 2012
0 references
Mathieu operator
0 references
spectral gap asymptotics
0 references
0 references
0 references
0 references
0 references
The paper is concerned with the eigenvalue problem for the Mathieu operator \(L(y)=-y''+2a\cos(2x)y\), \(a\in\mathbb{C}\), \(a\not=0\), with periodic or anti-periodic boundary conditions. The authors extend the result of Harrell-Avron-Simon and obtain the following estimate for the size of the spectral gap for the Mathieu operator NEWLINE\[NEWLINE\lambda_n^+-\lambda_n^-=\pm\displaystyle\frac{8(a/4)^n}{[(n-1)!]^2}\left[1-\displaystyle\frac{a^2}{4n^3}+O\left(\displaystyle\frac{1}{n^4}\right)\right],\;,n\to\infty.NEWLINE\]
0 references